1,405 research outputs found

    A notion of graph likelihood and an infinite monkey theorem

    Full text link
    We play with a graph-theoretic analogue of the folklore infinite monkey theorem. We define a notion of graph likelihood as the probability that a given graph is constructed by a monkey in a number of time steps equal to the number of vertices. We present an algorithm to compute this graph invariant and closed formulas for some infinite classes. We have to leave the computational complexity of the likelihood as an open problem.Comment: 6 pages, 1 EPS figur

    Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    Full text link
    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.Comment: 20 pages, 5 figures. In Press in Sci Rep 201

    Regular quantum graphs

    Full text link
    We introduce the concept of regular quantum graphs and construct connected quantum graphs with discrete symmetries. The method is based on a decomposition of the quantum propagator in terms of permutation matrices which control the way incoming and outgoing channels at vertex scattering processes are connected. Symmetry properties of the quantum graph as well as its spectral statistics depend on the particular choice of permutation matrices, also called connectivity matrices, and can now be easily controlled. The method may find applications in the study of quantum random walks networks and may also prove to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure

    Wick's theorem for q-deformed boson operators

    Get PDF
    In this paper combinatorial aspects of normal ordering arbitrary words in the creation and annihilation operators of the q-deformed boson are discussed. In particular, it is shown how by introducing appropriate q-weights for the associated ``Feynman diagrams'' the normally ordered form of a general expression in the creation and annihilation operators can be written as a sum over all q-weighted Feynman diagrams, representing Wick's theorem in the present context.Comment: 9 page

    Estimation of pure qubits on circles

    Full text link
    Gisin and Popescu [PRL, 83, 432 (1999)] have shown that more information about their direction can be obtained from a pair of anti-parallel spins compared to a pair of parallel spins, where the first member of the pair (which we call the pointer member) can point equally along any direction in the Bloch sphere. They argued that this was due to the difference in dimensionality spanned by these two alphabets of states. Here we consider similar alphabets, but with the first spin restricted to a fixed small circle of the Bloch sphere. In this case, the dimensionality spanned by the anti-parallel versus parallel alphabet is now equal. However, the anti-parallel alphabet is found to still contain more information in general. We generalize this to having N parallel spins and M anti-parallel spins. When the pointer member is restricted to a small circle these alphabets again span spaces of equal dimension, yet in general, more directional information can be found for sets with smaller |N-M| for any fixed total number of spins. We find that the optimal POVMs for extracting directional information in these cases can always be expressed in terms of the Fourier basis. Our results show that dimensionality alone cannot explain the greater information content in anti-parallel combinations of spins compared to parallel combinations. In addition, we describe an LOCC protocol which extract optimal directional information when the pointer member is restricted to a small circle and a pair of parallel spins are supplied.Comment: 23 pages, 8 figure

    A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime

    Full text link
    We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties, instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.Comment: 23 pages, 6 figures; updated to published versio

    A mathematical model of kinetoplastid mitochondrial gene scrambling advantage

    Get PDF
    We model and discuss advantages of pan-editing, the complex way of expressing mitochondrial genes in kinetoplastids. The rapid spread and preservation of pan-editing seems to be due to its concomitant fragment dispersal. Such dispersal prevents losing temporarily non expressed mitochondrial genes upon intense intraspecific competition, by linking non expressed fragments to parts which are still needed. We mathematically modelled protection against gene loss, due to the absence of selection, by this kind of fragment association. This gives ranges of values for parameters like scrambling extent, population size, and number of generations still retaining full genomes despite limited selection. Values obtained seem consistent with those observed. We find a quasi-linear correlation between dispersal and number of generations after which populations lose genes, showing that pan-editing can be selected to effectively limit gene loss under relaxed selective pressure

    Locality for quantum systems on graphs depends on the number field

    Full text link
    Adapting a definition of Aaronson and Ambainis [Theory Comput. 1 (2005), 47--79], we call a quantum dynamics on a digraph "saturated Z-local" if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.Comment: 9 page

    Increased entropy of signal transduction in the cancer metastasis phenotype

    Get PDF
    Studies into the statistical properties of biological networks have led to important biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis. Further exploration of such integrated cancer expression and protein interaction networks will therefore be a fruitful endeavour.Comment: 5 figures, 2 Supplementary Figures and Table
    corecore