34 research outputs found

    Cereal grain-based biodegradable thermoplastic compositions

    Get PDF
    The present invention provides a biodegradable thermoplastic composition made of a cereal grain that is treated with an organic solvent, and optionally a cross-linking agent such as an aldehyde, an acid anhydride or an epoxide, to link together the starch and protein of the cereal grain. The compositions may be used to make extruded or molded articles that are biodegradable, water-resistant, and have a high level of physical strength

    Extranodal Interdigitating Dendritic Cell Sarcoma Presenting in the Pleura: A Case Report

    Get PDF
    Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare neoplasm arising from the antigen-presenting cells of the immune system. This disease usually involves the lymph nodes, and rarely, extranodal sites may be affected. The authors report a case of extranodal IDCS presenting in the pleura. A 32-yr-old man presented with progressive chest pain. Imaging studies showed diffuse pleural thickening with pleural effusion. Morphological and immunohistochemical analysis of an incisional biopsy of the pleura were consistent with a diagnosis of IDCS; tumor cells were positive for S100 and CD45, but negative for CD1a, CD21, CD35, B cell and T cell markers. The patient was administered chemotherapy, but died of progressive disease. Although its incidence is extremely rare, this case suggests that extranodal IDCS should be considered in the differential diagnosis of undifferentiated neoplasms and that immunohistochemical staining be performed using appropriate markers

    Cereal grain-based biodegradable thermoplastic compositions

    No full text
    The present invention provides a biodegradable thermoplastic composition made of a cereal grain that is treated with an organic solvent, and optionally a cross-linking agent such as an aldehyde, an acid anhydride or an epoxide, to link together the starch and protein of the cereal grain. The compositions may be used to make extruded or molded articles that are biodegradable, water-resistant, and have a high level of physical strength.</p

    Immunostimulatory Potential of Extracellular Vesicles Isolated from an Edible Plant, Petasites japonicus, via the Induction of Murine Dendritic Cell Maturation.

    No full text
    Extracellular vesicles (EVs) have recently been isolated from different plants. Plant-derived EVs have been proposed as potent therapeutics and drug-delivery nanoplatforms for delivering biomolecules, including proteins, RNAs, DNAs, and lipids. Herein, Petasites japonicus-derived EVs (PJ-EVs) were isolated through a series of centrifugation steps and characterized using dynamic light scattering and transmission electron microscopy. Immunomodulatory effects of PJ-EVs were assessed using dendritic cells (DCs). PJ-EVs exhibited a spherical morphology with an average size of 122.6 nm. They induced the maturation of DCs via an increase in the expression of surface molecules (CD80, CD86, MHC-I, and MHC-II), production of Th1-polarizing cytokines (TNF-α and IL-12p70), and antigen-presenting ability; however, they reduced the antigen-uptake ability. Furthermore, maturation of DCs induced by PJ-EVs was dependent on the activation and phosphorylation of MAPK and NF-κB signal pathways. Notably, PJ-EV-treated DCs strongly induced the proliferation and differentiation of naïve T cells toward Th1-type T cells and cytotoxic CD8+ T cells along with robust secretion of IFN-γ and IL-2. In conclusion, our study indicates that PJ-EVs can be potent immunostimulatory candidates with an ability of strongly inducing the maturation of DCs

    Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc-air battery separator membranes

    No full text
    Zinc (Zn)-air batteries have recently attracted a great deal of attention as a promising energy storage system to fulfill our ever-increasing demand for higher energy density power sources. Despite commercial success of primary Zn-air batteries, performances of rechargeable Zn-air batteries are still far below practically satisfactory levels. Among critical challenges facing the electrochemical rechargeability, the crossover of zincate (Zn(OH)(4)(2-)) ions from the Zn anode to the air cathode (via separator membranes) is a formidable bottleneck. Here, as a facile and scalable polymer architecture strategy to address this ion transport issue, we demonstrate a new class of polymer blend electrolyte membranes with artificially engineered, bicontinuous anion-conducting/-repelling phases (referred to as &quot;PBE membranes&quot;). As an anion-conducting continuous phase, an electrospun polyvinyl alcohol (PVA)/polyacrylic acid (PAA) nanofiber mat is fabricated. Into the PVA/PAA nanofiber mat, Nafion bearing pendant sulfonate groups is impregnated to form an anion-repelling continuous phase. Such bicontinuous phase-mediated structural uniqueness enables the PBE membrane to act as a selective ion transport channel, i.e., effectively suppresses Zn(OH)(4)(2-) crossover (by a continuous Nafion phase offering the Donnan exclusion effect) with slightly impairing OH- conduction (predominantly through the PVA/PAA nanofiber mat), eventually improving the cycling stability (cycle time = over 2500 min for the PBE membrane vs. 900 min for a conventional polypropylene separator). The PBE membrane featuring the selective transport of OH- and Zn(OH)(4)(2-) ions is anticipated to pave a new route that leads us closer toward rechargeable Zn-air batteriesclose

    Electrospun polyetherimide nanofiber mat-reinforced, permselective polyvinyl alcohol composite separator membranes: A membrane-driven step closer toward rechargeable zinc-air batteries

    No full text
    Despite the commercial success of primary Zinc (Zn)-air batteries, rechargeable Zn-air batteries are still far behind meaningful performance levels. Among numerous challenges facing rechargeable Zn-air batteries, from the material point of view, separator membranes should not be underestimated, along with other battery components such as anodes, cathodes and electrolytes. More particularly, crossover of soluble zincate (Zn(OH4 2-)) ions through separator membranes from Zn anode to air cathode, which significantly affects electrochemical performance of Zn-air cells, has hardly been addressed. Here, as a facile and scalable strategy to resolve the separator membrane-related issues, we demonstrate a new class of electrospun nanofiber mat-reinforced permselective composite membranes (referred to as ERC membranes) and explore their potential contribution to development of rechargeable Zn-air cells in terms of transport phenomena of hydroxyl (OH-) and (Zn(OH4 2-)) ions. The ERC membrane is fabricated by impregnating polyvinyl alcohol (PVA) into electrospun polyetherimide (PEI) nanofiber mat. The PEI nanofiber mat acts as a compliant framework to endow dimensional stability and mechanical strength. The PVA matrix, after being swelled with electrolyte solution, provides ion size (OH- vs. (Zn(OH4 2-)))-dependent conductive pathways. This architecture/material uniqueness of the ERC membrane effectively suppresses permeation of bulky (Zn(OH4 2-)) ions without impairing OH- conduction, thereupon achieving exceptional cycle capacity retention of Zn-air cells far beyond those accessible with conventional microporus polyolefin separators. The ERC membrane featuring the ion size exclusion-based permselectivity opens a new membrane-driven opportunity that leads us closer toward rechargeable Zn-air batteries.close0
    corecore