88 research outputs found
Artemisia fragransWilld. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val.
The confused flour beetle, Tribolium confusum du Val, is one of the cosmopolitan and polyphagous storage insect pests. The frequent application of chemical insecticides has resulted in several side effects, including threats to human health and non-target organisms and the resistance of insect pests. In the current study, the fumigant toxicity and feeding deterrence potential of Artemisia fragrans Willd. essential oil on T. confusum adults were investigated. The essential oil was rich in
terpenic compounds, in which α-thujone (27.8%) and 1,8-cineole (22.8%) were dominant. The essential oil displayed significant fumigant toxicity on T. confusum, where a concentration of 35.3 μL/L caused 100% mortality of the treated adults after 48 h. The LC30 and LC40 values (lethal concentrations to kill 30% and 40% of tested insects: 15.1 and 18.4 μL/L, respectively) significantly decreased the nutritional indices of the pest, including the consumption index, relative consumption rate, and
relative growth rate. The feeding deterrence index of the essential oil were calculated as being 62.29 and 48.66% for the concentrations of 15.1 and 18.4 μL/L after 5 days, respectively. Accordingly, A. fragrans essential oil can be considered an efficient, available, and natural alternative to detrimental chemical pesticides in the management of T. confusum
Volatile constituents from Samanae saman (Jacq.) Merr. Fabaceae
In this work, we report on the constituents identified from the fruits volatile oil of Samanae saman (Jacq.) Merr., Fabaceae. The volatile oil was obtained by hydrodistillation in an all glass Clevenger-type apparatus. The oil content was 0.23% (w/w), on a dry weight basis. The oil was analyzed by GC-MS. Altogether, 32 compounds were identified accounting for 99.7% of the total oil content. Fatty acids comprised 69.1% of the oil content; with palmitic acid (55.6%) being the most singly abundant constituent. 1,8-Cineole (15.9%) was the quantitatively significant constituent of the terpenoids
A new chemical form of essential oil of Hyssopus officinalis L. (Lamiaceae) from Nigeria
Essential oil obtained by hydrodistillation from the air-dried leaves of Hyssopus officinalis L. (Lamiaceae) collected in Ajangbadi area, West of Lagos, Nigeria, was analyzed comprehensively for its constituents by means of gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The monoterpene hydrocarbons, á-pinene (70.9%) and â-pinene (10.9%) are the dominant constituents of the oil of H. officinalis. A cluster analysis was performed for comparison and characterization of H. officinalis essential oil from Nigeria with other oils reported in the literature from different locations across the world, and reveals chemical variation in this species with at least 8 different chemotypes. The compositional pattern of Nigerian oil sample was being reported for the first time and represents another chemotype of the oil of H. officinalis
Phytochemicals in prostate cancer: From bioactive molecules to upcoming therapeutic agents
Prostate cancer is a heterogeneous disease, the second deadliest malignancy in men and the most commonly diagnosed cancer among men. Traditional plants have been applied to handle various diseases and to develop new drugs. Medicinal plants are potential sources of natural bioactive compounds that include alkaloids, phenolic compounds, terpenes, and steroids. Many of these naturally-occurring bioactive constituents possess promising chemopreventive properties. In this sense, the aim of the present review is to provide a detailed overview of the role of plant-derived phytochemicals in prostate cancers, including the contribution of plant extracts and its corresponding isolated compounds.This work was supported by CONICYT PIA/APOYO CCTE AFB170007. N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT–Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020 - Programa Operacional Regional do Norte” (NORTE-01-0145-FEDER-000012) and C. F. Rodrigues for the UID/EQU/00511/2019 Project—Laboratory of Process Engineering, Environment, Biotechnology, and Energy—LEPABE financed by national funds through FCT/MCTES (PIDDAC)
Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli
<p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>occurs naturally in the human gut; however, certain strains that can cause infections, are becoming resistant to antibiotics. Multidrug-resistant <it>E. coli </it>that produce extended-spectrum β lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of urinary tract infections (UTIs) and bloodstream infections may be associated with these community-onsets. This is the first report testing the antibiotic resistance-modifying activity of nineteen Jordanian plants against multidrug-resistant <it>E. coli</it>.</p> <p>Methods</p> <p>The susceptibility of bacterial isolates to antibiotics was tested by determining their minimum inhibitory concentrations (MICs) using a broth microdilution method. Nineteen Jordanian plant extracts (<it>Capparis spinosa </it>L., <it>Artemisia herba-alba Asso, Echinops polyceras </it>Boiss., <it>Gundelia tournefortii </it>L, <it>Varthemia iphionoides </it>Boiss. & Blanche, <it>Eruca sativa Mill</it>., <it>Euphorbia macroclada </it>L., <it>Hypericum trequetrifolium </it>Turra, <it>Achillea santolina </it>L., <it>Mentha longifolia </it>Host, <it>Origanum syriacum </it>L., <it>Phlomis brachydo</it>(Boiss.) Zohary, <it>Teucrium polium </it>L., <it>Anagyris foetida </it>L., <it>Trigonella foenum-graecum </it>L., <it>Thea sinensis </it>L., <it>Hibiscus sabdariffa </it>L., <it>Lepidium sativum </it>L., <it>Pimpinella anisum </it>L.) were combined with antibiotics, from different classes, and the inhibitory effect of the combinations was estimated.</p> <p>Results</p> <p>Methanolic extracts of the plant materials enhanced the inhibitory effects of chloramphenicol, neomycin, doxycycline, cephalexin and nalidixic acid against both the standard strain and to a lesser extent the resistant strain of <it>E. coli</it>. Two edible plant extracts (<it>Gundelia tournefortii L</it>. and <it>Pimpinella anisum L</it>.) generally enhanced activity against resistant strain. Some of the plant extracts like <it>Origanum syriacum </it>L.(Labiateae), <it>Trigonella foenum- graecum </it>L.(Leguminosae), <it>Euphorbia macroclada </it>(Euphorbiaceae) and <it>Hibiscus sabdariffa </it>(Malvaceae) did not enhance the activity of amoxicillin against both standard and resistant <it>E. coli</it>. On the other hand combinations of amoxicillin with other plant extracts used showed variable effect between standard and resistant strains. Plant extracts like <it>Anagyris foetida </it>(Leguminosae) and <it>Lepidium sativum </it>(Umbelliferae) reduced the activity of amoxicillin against the standard strain but enhanced the activity against resistant strains. Three edible plants; Gundelia <it>tournefortii </it>L. (Compositae) <it>Eruca sativa </it>Mill. (Cruciferae), and <it>Origanum syriacum </it>L. (Labiateae), enhanced activity of clarithromycin against the resistant <it>E. coli </it>strain.</p> <p>Conclusion</p> <p>This study probably suggests possibility of concurrent use of these antibiotics and plant extracts in treating infections caused by <it>E. coli </it>or at least the concomitant administration may not impair the antimicrobial activity of these antibiotics.</p
Anticancer Activity of 2α, 3α, 19β, 23β-Tetrahydroxyurs-12-en-28-oic Acid (THA), a Novel Triterpenoid Isolated from Sinojackia sarcocarpa
BACKGROUND: Natural products represent an important source for agents of cancer prevention and cancer treatment. More than 60% of conventional anticancer drugs are derived from natural sources, particularly from plant-derived materials. In this study, 2α, 3α, 19β, 23β-tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid from the leaves of Sinojackia sarcocarpa, was isolated, and its anticancer activity was investigated both in vitro and in vivo. PRINCIPAL FINDINGS: THA possessed potent tumor selected toxicity in vitro. It exhibited significantly higher cytotoxicity to the cancer cell lines A2780 and HepG2 than to IOSE144 and QSG7701, two noncancerous cell lines derived from ovary epithelium and liver, respectively. Moreover, THA showed a dose-dependent inhibitory effect on A2780 ovary tumor growth in vivo in nude mice. THA induced a dose-dependent apoptosis and G2/M cell cycle arrest in A2780 and HepG2 cells. The THA-induced cell cycle arrest was accompanied by a downregulation of Cdc2. The apoptosis induced by THA was evident by induction of DNA fragmentation, release of cytoplasmic Cytochrome c from mitochondria, activation of caspases, downregulation of Bcl-2 and upregulation of Bax. CONCLUSION: The primary data indicated that THA exhibit a high toxicity toward two cancer cells than their respective non-cancerous counterparts and has a significant anticancer activity both in vitro and in vivo. Thus, THA and/or its derivatives may have great potential in the prevention and treatment of human ovary tumors and other malignancies
Cruzain Inhibitory Activity of Leaf Essential Oils of Neotropical Lauraceae and Essential Oil Components
- …
