48 research outputs found

    The significance of ErbB2/3 in the conversion of induced pluripotent stem cells into cancer stem cells

    Get PDF
    Cancer stem cells (CSCs) are suggested to be responsible for drug resistance and aggressive phenotypes of tumors. Mechanisms of CSC induction are still under investigation. Our lab has established a novel method to generate CSCs from iPSCs under a cancerous microenvironment mimicked by the conditioned medium (CM) of cancer-derived cells. Here, we analyzed the transcriptome of CSCs, which were converted from iPSCs with CM from pancreatic ductal adenocarcinoma cells. The differentially expressed genes were identified and used to explore pathway enrichment. From the comparison of the CSCs with iPSCs, genes with elevated expression were related to the ErbB2/3 signaling pathway. Inhibition of either ErbB2 with lapatinib as a tyrosine kinase inhibitor or ErbB3 with TX1-85-1 or siRNAs arrested cell proliferation, inhibited the in vitro tumorigenicity, and lead to loss of stemness in the converting cells. The self-renewal and tube formation abilities of cells were also abolished while CD24 and Oct3/4 levels were reduced, and the MAPK pathway was overactivated. This study shows a potential involvement of the ErbB2/ErbB3 pathway in CSC generation and could lead to new insight into the mechanism of tumorigenesis and the way of cancer prevention

    Metastasis Model of Cancer Stem Cell-Derived Tumors

    Get PDF
    Metastasis includes the dissemination of cancer cells from a malignant tumor and seed in distant sites inside the body forming secondary tumors. Metastatic cells from the primary tumor can move even before the cancer is detected. Therefore, metastases are responsible for more than 90% of cancer-related deaths. Over recent decades there has been adequate evidence suggesting the existence of CSCs with self-renewing and drug-resistant potency within heterogeneous tumors. Cancer stem cells (CSCs) act as a tumor initiating cells and have roles in tumor retrieve and metastasis. Our group recently developed a unique CSC model from mouse induced pluripotent stem cells cultured in the presence of cancer cell-conditioned medium that mimics tumors microenvironment. Using this model, we demonstrated a new method for studying metastasis by intraperitoneal transplantation of tumors and investigate the metastasis ability of cells from these segments. First of all, CSCs were injected subcutaneously in nude mice. The developed malignant tumors were minimized then transplanted into the peritoneal cavity. Following this, the developed tumor in addition to lung, pancreas and liver were then excised and analyzed. Our method showed the metastatic potential of CSCs with the ability of disseminated and moving to blood circulation and seeding in distant organs such as lung and pancreas. This method could provide a good model to study the mechanisms of metastasis according to CSC theory

    Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs

    Get PDF
    The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME

    Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy

    Get PDF
    Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations

    DCIR欠損による中枢性自己免疫疾患の増悪化

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 中江 進, 東京大学教授 服部 正平, 東京大学教授 鈴木 穣, 東京大学教授 三宅 健介, 東京理科大学教授 岩倉 洋一郎University of Tokyo(東京大学

    Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro

    Get PDF
    Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion

    Cancer stem cells induced by chronic stimulation with prostaglandin E2 exhibited constitutively activated PI3K axis

    Get PDF
    Previously, our group has demonstrated establishment of Cancer Stem Cell (CSC) models from stem cells in the presence of conditioned medium of cancer cell lines. In this study, we tried to identify the factors responsible for the induction of CSCs. Since we found the lipid composition could be traced to arachidonic acid cascade in the CSC model, we assessed prostaglandin E2 (PGE2) as a candidate for the ability to induce CSCs from induced pluripotent stem cells (iPSCs). Mouse iPSCs acquired the characteristics of CSCs in the presence of 10 ng/mL of PGE2 after 4 weeks. Since constitutive Akt activation and pik3cg overexpression were found in the resultant CSCs, of which growth was found independent of PGE2, chronic stimulation of the receptors EP-2/4 by PGE2 was supposed to induce CSCs from iPSCs through epigenetic effect. The bioinformatics analysis of the next generation sequence data of the obtained CSCs proposed not only receptor tyrosine kinase activation by growth factors but also extracellular matrix and focal adhesion enhanced PI3K pathway. Collectively, chronic stimulation of stem cells with PGE2 was implied responsible for cancer initiation enhancing PI3K/Akt axis

    A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment

    Get PDF
    Cancer-associated fibroblasts (CAFs) are one of the most prominent cell types in the stromal compartment of the tumor microenvironment. CAFs support multiple aspects of cancer progression, including tumor initiation, invasion, and metastasis. The heterogeneous nature of the stromal microenvironment is attributed to the multiple sources from which the cells in this compartment originate. The present study provides the first evidence that cancer stem cells (CSCs) are one of the key sources of CAFs in the tumor niche. We generated CSC-like cells by treating mouse induced pluripotent stem cells with conditioned medium from breast cancer cell lines. The resulting cell population expressed both CSC and pluripotency markers, and the sphere-forming CSC-like cells formed subcutaneous tumors in nude mice. Intriguingly, these CSC-like cells always formed heterogeneous populations surrounded by myofibroblast-like cells. Based on this observation, we hypothesized that CSCs could be the source of the CAFs that support tumor maintenance and survival. To address this hypothesis, we induced the differentiation of spheres and purified the myofibroblast-like cells. The resulting cells exhibited a CAF-like phenotype, suggesting that they had differentiated into the subpopulations of cells that support CSC self-renewal. These findings provide novel insights into the dynamic interplay between various microenvironmental factors and CAFs in the CSC niche

    Microenvironment of mammary fat pads affected the characteristics of the tumors derived from the induced cancer stem cells

    Get PDF
    Breast cancer is the first common cause of cancer-related death in women worldwide. Since the malignancy and aggressiveness of breast cancer have been correlated with the presence of breast cancer stem cells, the establishment of a disease model with cancer stem cells is required for the development of a novel therapeutic strategy. Here, we aimed to evaluate the availability of cancer stem cell models developed from mouse induced pluripotent stem cells with the conditioned medium of different subtypes of breast cancer cell lines, the hormonal-responsive T47D cell line and the triple-negative breast cancer BT549 cell line, to generate in vivo tumor models. When transplanted into the mammary fat pads of BALB/c nude mice, these two model cells formed malignant tumors exhibiting pronounced histopathological characteristics similar to breast cancers. Serial transplantation of the primary cultured cells into mammary fat pads evoked the same features of breast cancer, while this result was perturbed following subcutaneous transplantation. The tumors formed in the mammary fat pads exhibited immune reactivities to prolactin receptor, progesterone receptor, green florescent protein, Ki67, CD44, estrogen receptor alpha/beta and cytokeratin 8, while all of the tumors and their derived primary cells exhibited immunoreactivity to estrogen receptor alpha/beta and cytokeratin 8. Cancer stem cells can be developed from pluripotent stem cells via the secretory factors of cancer-derived cells with the capacity to inherit tissue specificity. However, cancer stem cells should be plastic enough to be affected by the microenvironment of specific tissues. In summary, we successfully established a breast cancer tumor model using mouse induced pluripotent stem cells developed from normal fibroblasts without genetic manipulation

    Cooperation between NRF2-mediated transcription and MDIG-dependent epigenetic modifications in arsenic-induced carcinogenesis and cancer stem cells

    Get PDF
    Environmental exposure to arsenic, a well-established carcinogen linked to a number of human cancers, is a public health concern in many areas of the world. Despite extensive studies on the molecular mechanisms of arsenic-induced carcinogenesis, how initial cellular responses, such as activation of stress kinases and the generation of reactive oxygen species, converge to affect the transcriptional and/or epigenetic reprogramming required for the malignant transformation of normal cells or normal stem cells remains to be elucidated. In this review, we discuss some recent discoveries showing how the transcription factor NRF2 and an epigenetic regulator, MDIG, contribute to the arsenic-induced generation of cancer stem-like cells (CSCs) as determined by applying CRISPR-Cas9 gene editing and chromosome immunoprecipitation followed by DNA sequencing (ChIP-seq)
    corecore