23 research outputs found

    Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers.

    No full text
    Frontotemporal dementia (FTD) is a neurodegenerative disease with a strong genetic basis. Understanding the structural brain changes during pre-symptomatic stages may allow for earlier diagnosis of patients suffering from FTD; therefore, we investigated asymptomatic members of FTD families with mutations in C9orf72 and granulin (GRN) genes. Clinically asymptomatic subjects from families with C9orf72 mutation (15 mutation carriers, C9orf72+; and 23 non-carriers, C9orf72-) and GRN mutations (9 mutation carriers, GRN+; and 15 non-carriers, GRN-) underwent structural neuroimaging (MRI). Cortical thickness and subcortical gray matter volumes were calculated using FreeSurfer. Group differences were evaluated, correcting for age, sex and years to mean age of disease onset within the subject's family. Mean age of C9orf72+ and C9orf72- were 42.6 ± 11.3 and 49.7 ± 15.5 years, respectively; while GRN+ and GRN- groups were 50.1 ± 8.7 and 53.2 ± 11.2 years respectively. The C9orf72+ group exhibited cortical thinning in the temporal, parietal and frontal regions, as well as reduced volumes of bilateral thalamus and left caudate compared to the entire group of mutation non-carriers (NC: C9orf72- and GRN- combined). In contrast, the GRN+ group did not show any significant differences compared to NC. C9orf72 mutation carriers demonstrate a pattern of reduced gray matter on MRI prior to symptom onset compared to GRN mutation carriers. These findings suggest that the preclinical course of FTD differs depending on the genetic basis and that the choice of neuroimaging biomarkers for FTD may need to take into account the specific genes involved in causing the disease

    Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers.

    No full text
    ObjectiveIn this prospective cohort study, we investigated cerebral glucose metabolism reductions on [(18)F]-fluorodeoxyglucose (FDG)-PET in progranulin (GRN) mutation carriers prior to frontotemporal dementia (FTD) onset.MethodsNine mutation carriers (age 51.5 ± 13.5 years) and 11 noncarriers (age 52.7 ± 9.5 years) from 5 families with FTD due to GRN mutations underwent brain scanning with FDG-PET and MRI and clinical evaluation. Normalized FDG uptake values were calculated with reference to the pons. PET images were analyzed with regions of interest (ROI) and statistical parametric mapping (SPM) approaches.ResultsCompared with noncarriers, GRN mutation carriers had a lowered anterior-to-posterior (AP) ratio of FDG uptake (0.86 ± 0.09 vs 0.92 ± 0.05) and less left-right asymmetry, consistent with an overall pattern of right anterior cerebral hypometabolism. This pattern was observed regardless of whether they were deemed clinically symptomatic no dementia or asymptomatic. Individual ROIs with lowered FDG uptake included right anterior cingulate, insula, and gyrus rectus. SPM analysis supported and extended these findings, demonstrating abnormalities in the right and left medial frontal regions, right insular cortex, right precentral and middle frontal gyri, and right cerebellum. Right AP ratio was correlated with cognitive and clinical scores (modified Mini-Mental State Examination r = 0.74; Functional Rating Scale r = -0.73) but not age and years to estimated onset in mutation carriers.ConclusionThe frontotemporal lobar degenerative process associated with GRN mutations appears to begin many years prior to the average age at FTD onset (late 50s-early 60s). Right medial and ventral frontal cortex and insula may be affected in this process but the specific regional patterns associated with specific clinical variants remain to be elucidated

    Clinical and neuropathological features of ALS/FTD with TIA1 mutations

    No full text
    Mutations in the stress granule protein T-cell restricted intracellular antigen 1 (TIA1) were recently shown to cause amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). Here, we provide detailed clinical and neuropathological descriptions of nine cases with TIA1 mutations, together with comparisons to sporadic ALS (sALS) and ALS due to repeat expansions in C9orf72 (C9orf72+). All nine patients with confirmed mutations in TIA1 were female. The clinical phenotype was heterogeneous with a range in the age at onset from late twenties to the eighth decade (mean = 60 years) and disease duration from one to 6 years (mean = 3 years). Initial presentation was either focal weakness or language impairment. All affected individuals received a final diagnosis of ALS with or without FTD. No psychosis or parkinsonism was described. Neuropathological examination on five patients found typical features of ALS and frontotemporal lobar degeneration (FTLD-TDP, type B) with anatomically widespread TDP-43 proteinopathy. In contrast to C9orf72+ cases, caudate atrophy and hippocampal sclerosis were not prominent. Detailed evaluation of the pyramidal motor system found a similar degree of neurodegeneration and TDP-43 pathology as in sALS and C9orf72+ cases; however, cases with TIA1 mutations had increased numbers of lower motor neurons containing round eosinophilic and Lewy body-like inclusions on HE stain and round compact cytoplasmic inclusions with TDP-43 immunohistochemistry. Immunohistochemistry and immunofluorescence failed to demonstrate any labeling of inclusions with antibodies against TIA1. In summary, our TIA1 mutation carriers developed ALS with or without FTD, with a wide range in age at onset, but without other neurological or psychiatric features. The neuropathology was characterized by widespread TDP-43 pathology, but a more restricted pattern of neurodegeneration than C9orf72+ cases. Increased numbers of round eosinophilic and Lewy-body like inclusions in lower motor neurons may be a distinctive feature of ALS caused by TIA1 mutations.Medicine, Faculty ofNon UBCMedicine, Department ofNeurology, Division ofPathology and Laboratory Medicine, Department ofReviewedFacult
    corecore