31 research outputs found

    CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk

    Get PDF
    BACKGROUND: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer (CRC) in women. Our aim was to use a genome-wide gene-environment interaction analysis to identify genetic modifiers of CRC risk associated with use of MHT. METHODS: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any MHT, oestrogen-only (E-only) and combined oestrogen-progestogen (E+P) hormone preparations. To test for multiplicative interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case-control logistic regression as primary tests. The Cocktail test was used as secondary test. RESULTS: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and E+P (interaction OR (95% CIs)=0.61 (0.52-0.72), P=4.8 × 10(-9)). The secondary analysis also identified this interaction (Cocktail test OR=0.64 (0.52-0.78), P=1.2 × 10(-5) (alpha threshold=3.1 × 10(-4)). The ORs for association between E+P and CRC risk by rs964293 genotype were as follows: C/C, 0.96 (0.61-1.50); A/C, 0.61 (0.39-0.95) and A/A, 0.40 (0.22-0.73), respectively. CONCLUSIONS: Our results indicate that rs964293 modifies the association between E+P and CRC risk. The variant is located near CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into downstream pathways of CRC etiopathogenesis

    Long-term effects of medical management on growth and weight in individuals with urea cycle disorders

    Get PDF
    Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs

    Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations

    Get PDF
    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR

    A longitudinal study of urea cycle disorders

    No full text
    The urea cycle disorders consortium (UCDC) is a member of the NIH funded Rare Diseases Clinical Research Network and is performing a longitudinal study of 8 urea cycle disorders (UCD) with initial enrollment beginning in 2006. The consortium consists of 14 sites in the U.S., Canada and Europe. This report summarizes data mining studies of 614 patients with UCD enrolled in the UCDC’s longitudinal study protocol. The most common disorder is ornithine transcarbamylase deficiency, accounting for more than half of the participants. We calculated the overall prevalence of urea cycle disorders to be 1/35,000, with 2/3rds presenting initial symptoms after the newborn period. We found the mortality rate to be 24% in neonatal onset cases and 11% in late onset cases. The most common precipitant of clinical hyperammonemic episodes in the post-neonatal period was intercurrent infections. Elevations in both blood ammonia and glutamine appeared to be biomarkers for neurocognitive outcome. In terms of chronic treatment, low protein diet appeared to result in normal weight but decreased linear growth while N-scavenger therapy with phenybutyrate resulted in low levels of branched chain amino acids. Finally, we found an unexpectedly high risk for hepatic dysfunction in patients with ornithine transcarbamylase deficiency. This natural history study illustrates how a collaborative study of a rare genetic disorder can result in an improved understanding of morbidity and disease outcome

    A longitudinal study of urea cycle disorders

    Full text link
    The Urea Cycle Disorders Consortium (UCDC) is a member of the NIH funded Rare Diseases Clinical Research Network and is performing a longitudinal study of 8 urea cycle disorders (UCDs) with initial enrollment beginning in 2006. The consortium consists of 14 sites in the U.S., Canada and Europe. This report summarizes data mining studies of 614 patients with UCDs enrolled in the UCDC's longitudinal study protocol. The most common disorder is ornithine transcarbamylase deficiency, accounting for more than half of the participants. We calculated the overall prevalence of urea cycle disorders to be 1/35,000, with 2/3rds presenting initial symptoms after the newborn period. We found the mortality rate to be 24% in neonatal onset cases and 11% in late onset cases. The most common precipitant of clinical hyperammonemic episodes in the post-neonatal period was intercurrent infections. Elevations in both blood ammonia and glutamine appeared to be biomarkers for neurocognitive outcome. In terms of chronic treatment, low protein diet appeared to result in normal weight but decreased linear growth while N-scavenger therapy with phenylbutyrate resulted in low levels of branched chain amino acids. Finally, we found an unexpectedly high risk for hepatic dysfunction in patients with ornithine transcarbamylase deficiency. This natural history study illustrates how a collaborative study of a rare genetic disorder can result in an improved understanding of morbidity and disease outcome

    Developing interactions with industry in rare diseases: lessons learned and continuing challenges.

    No full text
    The National Institutes of Health (NIH) established the Rare Diseases Clinical Research Network to address the unique challenges of performing research on rare diseases. The Urea Cycle Disorders Consortium (UCDC) was one of the original ten consortia established. The UCDC represents a unique partnership among clinicians, patients, and the NIH with a primary goal of increasing the development of therapeutics that improve patient outcomes for persons affected with a UCD. Based in part on financial incentives associated with the Orphan Drug Act biopharmaceutical and investment entities have an intense interest in engaging with research consortia like the UCDC, which have compiled potentially valuable longitudinal data characterizing outcomes in a relatively large number of affected individuals. We describe the UCDC experience and the bases for evaluating partnerships with such private entities. We review early industry interactions, the development of policies and procedures, and describe the establishment of an Industry Relations Committee, including guiding principles. Challenges encountered, particularly in the transition when products are approved, and potential solutions are discussed. By building a framework for industry partnerships that guides us in resolving inevitable challenges, we can enthusiastically pursue novel and promising collaborations that can lead to breakthroughs in therapeutic interventions for patients

    Early prediction of phenotypic severity in Citrullinemia Type 1

    Get PDF
    Objective Citrullinemia type 1 (CTLN1) is an inherited metabolic disease affecting the brain which is detectable by newborn screening. The clinical spectrum is highly variable including individuals with lethal hyperammonemic encephalopathy in the newborn period and individuals with a mild‐to‐moderate or asymptomatic disease course. Since the phenotypic severity has not been predictable early during the disease course so far, we aimed to design a reliable disease prediction model. Methods We used a newly established mammalian biallelic expression system to determine residual enzymatic activity of argininosuccinate synthetase 1 (ASS1; OMIM #215700) in 71 individuals with CTLN1, representing 48 ASS1 gene variants and 50 different, mostly compound heterozygous combinations in total. Residual enzymatic ASS1 activity was correlated to standardized biochemical and clinical endpoints available from the UCDC and E‐IMD databases. Results Residual enzymatic ASS1 activity correlates with peak plasma ammonium and L‐citrulline concentrations at initial presentation. Individuals with 8% of residual enzymatic ASS1 activity or less had more frequent and more severe hyperammonemic events and lower cognitive function than those above 8%, highlighting that residual enzymatic ASS1 activity allows reliable severity prediction. Noteworthy, empiric clinical practice of affected individuals is in line with the predicted disease severity supporting the notion of a risk stratification‐based guidance of therapeutic decision‐making based on residual enzymatic ASS1 activity in the future. Interpretation Residual enzymatic ASS1 activity reliably predicts the phenotypic severity in CTLN1. We propose a new severity‐adjusted classification system for individuals with CTLN1 based on the activity results of the newly established biallelic expression system

    Severity-adjusted evaluation of liver transplantation on health outcomes in urea cycle disorders

    Get PDF
    Purpose: Liver transplantation (LTx) is performed in individuals with urea cycle disorders when medical management (MM) insufficiently prevents the occurrence of hyperammonemic events. However, there is a paucity of systematic analyses on the effects of LTx on health-related outcome parameters compared to individuals with comparable severity who are medically managed. Methods: We investigated the effects of LTx and MM on validated health-related outcome parameters, including the metabolic disease course, linear growth, and neurocognitive outcomes. Individuals were stratified into “severe” and “attenuated” categories based on the genotype-specific and validated in vitro enzyme activity. Results: LTx enabled metabolic stability by prevention of further hyperammonemic events after transplantation and was associated with a more favorable growth outcome compared with individuals remaining under MM. However, neurocognitive outcome in individuals with LTx did not differ from the medically managed counterparts as reflected by the frequency of motor abnormality and cognitive standard deviation score at last observation. Conclusion: Whereas LTx enabled metabolic stability without further need of protein restriction or nitrogen-scavenging therapy and was associated with a more favorable growth outcome, LTx—as currently performed—was not associated with improved neurocognitive outcomes compared with long-term MM in the investigated urea cycle disorders.</p
    corecore