55 research outputs found

    Recertification guidelines for Massachusetts educators

    Get PDF
    The incorporation of the extracellular matrix (ECM) is essential for generating in vitro models that truly represent the microarchitecture found in human tissues. However, the cell-cell and cell-ECM interactions in vitro remains poorly understood in placental trophoblast biology. We investigated the effects of varying the surface properties (surface thickness and stiffness) of two ECMs, collagen I and Matrigel, on placental trophoblast cell morphology, viability, proliferation, and expression of markers involved in differentiation/syncytial fusion. Most notably, thicker Matrigel surfaces were found to induce the self-assembly of trophoblast cells into 3D spheroids that exhibited thickness-dependent changes in viability, proliferation, syncytial fusion, and gene expression profiles compared to two-dimensional cultures. Changes in F-actin organization, cell spread morphologies, and integrin and matrix metalloproteinase gene expression profiles, further reveal that the response to surface thickness may be mediated in part through cellular stiffness-sensing mechanisms. Our derivation of self-assembling trophoblast spheroid cultures through regulation of ECM surface alone contributes to a deeper understanding of cell-ECM interactions, and may be important for the advancement of in vitro platforms for research or diagnostics

    C. elegans MANF Homolog Is Necessary for the Protection of Dopaminergic Neurons and ER Unfolded Protein Response

    Get PDF
    Neurotrophic factors (NTFs) are important for the development, function, and survival of neurons in the mammalian system. Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are two recently identified members of a novel family of NTFs in vertebrates that function to protect dopaminergic neurons. Although these genes are conserved across eukaryotes, their mechanism of neuroprotection is not fully understood. Sequence searches for MANF/CDNF homologs in invertebrates have identified a single ortholog that is most related to MANF. Here we report the in vivo characterization of the MANF gene, manf-1, in the nematode Caenorhabditis elegans. We found that manf-1 mutants have an accelerated, age-dependent decline in the survival of dopaminergic neurons. The animals also show increased endoplasmic reticulum (ER) stress, as revealed by reporter gene expression analysis of hsp-4, an ER chaperone BiP/GRP78 homolog, suggesting that a failure to regulate the ER unfolded protein response (ER-UPR) may be a contributing factor to dopaminergic neurodegeneration. Expression studies of manf-1 revealed that the gene is broadly expressed in a pattern that matches closely with hsp-4. Consistent with the requirements of manf-1 in the ER-UPR, we found that aggregates of α-Synuclein, a major constituent of Lewy bodies, were significantly increased in body wall muscles of manf-1 mutant animals. Overall, our work demonstrates the important role of manf-1 in dopaminergic neuronal survival and the maintenance of ER homeostasis in C. elegans

    Improved inverter performance and renewable charging stations with battery swapping technique for electric vehicles

    Get PDF
    Automobiles have become a global common denominator. The hindrance with using automobile is that most of them operate with the help of fossil fuels. Exploitation of natural resources is increasing due to the demand for personal automobiles. This will cause a severe and potentially cataclysmic problem to our planet. To create a change in the global human behavior towards a more sustainable future we need to make intelligent choices for the next generation electric drive technology. By integrating Li – ion battery with solid state batteries we can achieve an efficient source with fast charging ability. A new charging station which is completely renewable will be erected for charging vehicles. With DC charging, more power can be delivered to the battery. Battery Management System (BMS) can be used to limit the peak voltage during charging and prevents cell voltage from dropping below threshold during discharging. In this we have proposed 7 level cascaded h bridge multilevel inverter topology to obtain nearly sinusoidal waveform to improve the performance and efficiency of induction motor fed electric vehicle drive system

    Finite-Element Modelling of Biotransistors

    Get PDF
    Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET) is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal

    Elution of Artificial Sputum from Swab by Rotating Magnetic Field-Induced Mechanical Impingement

    No full text
    Cotton-tipped applicator swabs are used as a collection device for many biological samples and its complete elution is a desired step for clinical and forensic diagnostics. Swabs are used to collect infectious body fluids, where the concentration of pathogens can range from 1 × 104 CFU/mL (colony forming units/mL) in respiratory-tract infections and 1 × 105 in urinary-tract infections, to up to 1 × 109 CFU/mL in salivary samples. These samples are then eluted and lysed, prior to DNA (De-oxy Ribonucleic Acid) analysis. The recovery of micro-organisms from a matrix of swab fibres depends on the nature of the body fluid, the type of the swab fibres, and the process of elution. Various methods to elute samples from swab include chemical digestion of fibres (~20% recovery), centrifugation (~58% recovery), piezoelectric vibration, or pressurized fluid-flow (~60% recovery). This study reports a magnetically-actuated physical impingement method for elution and recovery of artificial sputum samples from cotton fibres. A device has been fabricated to induce a rotating magnetic field on smaller magnetic particles in a vial that strikes the swab within a confined gap. Elution from the swab in this device was characterized using 2% Methyl cellulose in deionised water, loaded with fluorescent-tagged polystyrene beads and E. coli at various concentrations. The recovery efficiency was found to increase with both rotational speed and elution time, but plateaus after 400 RPM (Revolutions per minute) and 120 s, respectively. At a higher concentration of polystyrene beads (5 × 108 particles/mL), a maximum recovery of ~85% was achieved. With lower concentration, (1 × 105 particles/mL) the maximum efficiency (~92.8%) was found to be almost twice of passive elution (46.7%). In the case of E. coli, the corresponding recovery efficiency at 3.35 × 105 CFU/mL is 90.4% at 500 RPM and 120 s. This elution method is expected to have a wide applicability in clinical diagnostics
    • …
    corecore