2,630 research outputs found

    W+−H+W^+-H^+ Interference and Partial Width Asymmetry in Top and Antitop Decays

    Full text link
    We re-examine the question of a possible difference in the partial decay widths of tt and t‾\overline t, induced by an intermediate scalar boson H+H^+ with CPCP-violating couplings. The interference of W+W^+ and H+H^+ exchanges is analysed by constructing the 2×22\times 2 propagator matrix of the W+−H+W^+-H^+ system, and determining its absorptive part in terms of fermion loops. Results are obtained for the partial rate difference in the channels t→bl+νlt\to bl^+\nu_l and t→bcs‾t\to bc\overline s, which fulfil explicitly the constraints of CPTCPT invariance. These results are contrasted with those in previous work.Comment: 14 pages, report PITHA 94/1

    Magnetic and axial vector form factors as probes of orbital angular momentum in the proton

    Get PDF
    We have recently examined the static properties of the baryon octet (magnetic moments and axial vector coupling constants) in a generalized quark model in which the angular momentum of a polarized nucleon is partly spin ⟨Sz⟩\langle S_z \rangle and partly orbital ⟨Lz⟩\langle L_z \rangle. The orbital momentum was represented by the rotation of a flux-tube connecting the three constituent quarks. The best fit is obtained with ⟨Sz⟩=0.08±0.15\langle S_z \rangle = 0.08\pm 0.15, ⟨Lz⟩=0.42±0.14\langle L_z \rangle = 0.42\pm 0.14. We now consider the consequences of this idea for the q2q^2-dependence of the magnetic and axial vector form factors. It is found that the isovector magnetic form factor GMisovec(q2)G_M^{\mathrm{isovec}}(q^2) differs in shape from the axial form factor FA(q2)F_A(q^2) by an amount that depends on the spatial distribution of orbital angular momentum. The model of a rigidly rotating flux-tube leads to a relation between the magnetic, axial vector and matter radii, ⟨r2⟩mag=fspin⟨r2⟩axial+52forb⟨r2⟩matt\langle r^2 \rangle_{\mathrm{mag}} = f_{\mathrm{spin}} \langle r^2 \rangle_{\mathrm{axial}} + \frac{5}{2} f_{\mathrm{orb}} \langle r^2 \rangle_{\mathrm{matt}}, where forb/fspin=13⟨Lz⟩/GAf_{\mathrm{orb}}/ f_{\mathrm{spin}} = \frac{1}{3}\langle L_z \rangle / G_A, fspin+forb=1f_{\mathrm{spin}} + f_{\mathrm{orb}} = 1. The shape of FA(q2)F_A(q^2) is found to be close to a dipole with MA=0.92±0.06M_A = 0.92\pm 0.06 GeV.Comment: 18 pages, 5 ps-figures, uses RevTe

    Baryon Magnetic Moments and Proton Spin: A Model with Collective Quark Rotation

    Full text link
    We analyse the baryon magnetic moments in a model that relates them to the parton spins Δu\Delta u, Δd\Delta d, Δs\Delta s, and includes a contribution from orbital angular momentum. The specific assumption is the existence of a 3-quark correlation (such as a flux string) that rotates with angular momentum ⟨Lz⟩\langle L_z \rangle around the proton spin axis. A fit to the baryon magnetic moments, constrained by the measured values of the axial vector coupling constants a(3)=F+Da^{(3)}=F+D, a(8)=3F−Da^{(8)}=3F-D, yields ⟨Sz⟩=0.08±0.13\langle S_z \rangle = 0.08 \pm 0.13, ⟨Lz⟩=0.39±0.09\langle L_z \rangle = 0.39 \pm 0.09, where the error is a theoretical estimate. A second fit, under slightly different assumptions, gives ⟨Lz⟩=0.37±0.09\langle L_z \rangle = 0.37 \pm 0.09, with no constraint on ⟨Sz⟩\langle S_z \rangle. The model provides a consistent description of axial vector couplings, magnetic moments and the quark polarization ⟨Sz⟩\langle S_z \rangle measured in deep inelastic scattering. The fits suggest that a significant part of the angular momentum of the proton may reside in a collective rotation of the constituent quarks.Comment: 16 pages, 3 ps-figures, uses RevTeX. Abstract, Sec. II, III and IV have been expande

    Torsion matrices over commutative integral group rings

    Get PDF
    Let ZA be the integral group ring of a finite abelian group A, and n a positive integer greater than 5. We provide conditions on n and A under which every torsion matrix U, with identity augmentation, in GLn(ZA) is conjugate in GLn(QA) to a diagonal matrix with group elements on the diagonal. When A is infinite, we show that under similar conditions, U has a group trace and is stably conjugate to such a diagonal matrix

    Energy Spectra and Energy Correlations in the Decay H→ZZ→μ+μ−μ+μ−H\to ZZ\to \mu^+\mu^-\mu^+\mu^-

    Full text link
    It is shown that in the sequential decay H→ZZ→(f1f1ˉ)+(f2f2ˉ)H\to ZZ\to (f_1\bar{f_1})+ (f_2\bar{f_2}), the energy distribution of the final state particles provides a simple and powerful test of the HZZHZZ vertex. For a standard Higgs boson, the energy spectrum of any final fermion, in the rest frame of HH, is predicted to be dΓ/dx∼1+β4−2(x−1)2d\Gamma /dx\sim 1+\beta^4-2(x-1)^2, with β=1−4mZ2/mH2\beta = \sqrt{1-4m^2_Z/m^2_H} and 1−β≤x=4E/mH≤1+β1-\beta \le x=4E/m_H\le 1+\beta . By contrast, the spectrum for a pseudoscalar Higgs is dΓ/dx∼β2+(x−1)2d\Gamma /dx \sim \beta^2+(x-1)^2. There are characteristic energy correlations between f1f_1 and f2f_2 and between f1f_1 and f2ˉ\bar{f_2}. These considerations are applied to the ``gold--plated'' reaction H→ZZ→μ+μ−μ+μ−H\to ZZ\to \mu^+\mu^-\mu^+\mu^-, including possible effects of CP--violation in the HZZHZZ coupling. Our formalism also yields the energy spectra and correlations of leptons in the decay H→W+W−→l+νll−νlˉH\to W^+W^-\to l^+\nu_ll^- \bar{\nu_l}.Comment: 14 pages + 4 figure

    Energy Stores Are Not Altered by Long-Term Partial Sleep Deprivation in Drosophila melanogaster

    Get PDF
    Recent human studies reveal a widespread association between short sleep and obesity. Two hypotheses, which are not mutually exclusive, might explain this association. First, genetic factors that reduce endogenous sleep times might also impact energy stores, an assertion that we confirmed in a previous study. Second, metabolism may be altered by chronic partial sleep deprivation. Here we address the second assertion by measuring the impact of long-term partial sleep deprivation on energy stores using Drosophila as a model. We subjected flies to long-term partial sleep deprivation via two different methods: a mechanical stimulus and a light stimulus. We then measured whole-body triglycerides and glycogen, two important sources of energy for the fly, and compared them to un-stimulated controls. We also measured changes in energy stores in response to a random circadian clock shift. Sex and line-dependent alterations in glycogen and/or triglyceride levels occurred in response to the circadian clock shift and in flies subjected to a single night of sleep deprivation using light. Thus, consistent with previous studies, our findings suggest that acute sleep loss and changes to the circadian clock can alter metabolism. Significant changes in energy stores were also observed when flies were subjected to chronic sleep loss via the mechanical stimulus, although not the light stimulus. Interestingly, mechanical stimulation resulted in the same change in energy stores even when it was not associated with sleep deprivation, suggesting that the changes are caused by stress rather than sleep loss. These findings emphasize the importance of taking stress into account when evaluating the relationship between sleep loss and metabolism

    Energy correlation and asymmetry of secondary leptons in H→ttˉH\to t\bar t and H→W+W−H\to W^+W^-

    Full text link
    We study the energy correlation of charged leptons produced in the decay of a heavy Higgs particle H→ttˉ→bl+νlbˉl−νˉlH\to t\bar t\to bl^+\nu_l\bar bl^-\bar{\nu}_l and H→W+W−→l+νll−νˉl.H\to W^+W^-\to l^+\nu_ll^-\bar{\nu}_l. The possible influence of CPCP--violation in the HttˉHt\bar t and HW+W−HW^+W^- vertices on the energy spectrum of the secondary leptons is analyzed. The energy distribution of the charged leptons in the decay H→W+W−→l+νll−νˉlH\to W^+W^-\to l^+\nu_ll^-\bar{\nu}_l is sensitive to the CPCP--parity of the Higgs particle and yields a simple criterion for distinguishing scalar Higgs from pseudoscalar Higgs.Comment: 12 pages, + 4 uuencoded figures. report PITHA 94/2

    Probing the Relation Between X-ray-Derived and Weak-Lensing-Derived Masses for Shear-Selected Galaxy Clusters: I. A781

    Full text link
    We compare X-ray and weak-lensing masses for four galaxy clusters that comprise the top-ranked shear-selected cluster system in the Deep Lens Survey. The weak-lensing observations of this system, which is associated with A781, are from the Kitt Peak Mayall 4-m telescope, and the X-ray observations are from both Chandra and XMM-Newton. For a faithful comparison of masses, we adopt the same matter density profile for each method, which we choose to be an NFW profile. Since neither the X-ray nor weak-lensing data are deep enough to well constrain both the NFW scale radius and central density, we estimate the scale radius using a fitting function for the concentration derived from cosmological hydrodynamic simulations and an X-ray estimate of the mass assuming isothermality. We keep this scale radius in common for both X-ray and weak-lensing profiles, and fit for the central density, which scales linearly with mass. We find that for three of these clusters, there is agreement between X-ray and weak-lensing NFW central densities, and thus masses. For the other cluster, the X-ray central density is higher than that from weak-lensing by 2 sigma. X-ray images suggest that this cluster may be undergoing a merger with a smaller cluster. This work serves as an additional step towards understanding the possible biases in X-ray and weak-lensing cluster mass estimation methods. Such understanding is vital to efforts to constrain cosmology using X-ray or weak-lensing cluster surveys to trace the growth of structure over cosmic time.Comment: 14 pages, 7 figures, matches version in Ap

    Evidence for Non-Hydrostatic Gas from the Cluster X-ray to Lensing Mass Ratio

    Full text link
    Using a uniform analysis procedure, we measure spatially resolved weak gravitational lensing and hydrostatic X-ray masses for a sample of 18 clusters of galaxies. We find a radial trend in the X-ray to lensing mass ratio: at r2500 we obtain a ratio MX/ML=1.03+/-0.07 which decreases to MX/ML=0.78+/-0.09 at r500. This difference is significant at 3 sigma once we account for correlations between the measurements. We show that correcting the lensing mass for excess correlated structure outside the virial radius slightly reduces, but does not eliminate this trend. An X-ray mass underestimate, perhaps due to nonthermal pressure support, can explain the residual trend. The trend is not correlated with the presence or absence of a cool core. We also examine the cluster gas fraction and find no correlation with ML, an important result for techniques that aim to determine cosmological parameters using the gas fraction.Comment: 8 pages, minor modifications, accepted for publication in MNRA

    Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers

    Full text link
    A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer
    • …
    corecore