2,182 research outputs found

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    Unsupervised Path Representation Learning with Curriculum Negative Sampling

    Get PDF

    Unsupervised Path Representation Learning with Curriculum Negative Sampling

    Get PDF
    Path representations are critical in a variety of transportation applications, such as estimating path ranking in path recommendation systems and estimating path travel time in navigation systems. Existing studies often learn task-specific path representations in a supervised manner, which require a large amount of labeled training data and generalize poorly to other tasks. We propose an unsupervised learning framework Path InfoMax (PIM) to learn generic path representations that work for different downstream tasks. We first propose a curriculum negative sampling method, for each input path, to generate a small amount of negative paths, by following the principles of curriculum learning. Next, \emph{PIM} employs mutual information maximization to learn path representations from both a global and a local view. In the global view, PIM distinguishes the representations of the input paths from those of the negative paths. In the local view, \emph{PIM} distinguishes the input path representations from the representations of the nodes that appear only in the negative paths. This enables the learned path representations to encode both global and local information at different scales. Extensive experiments on two downstream tasks, ranking score estimation and travel time estimation, using two road network datasets suggest that PIM significantly outperforms other unsupervised methods and is also able to be used as a pre-training method to enhance supervised path representation learning.Comment: This paper has been accepted by IJCAI-2

    Thermal excitation of plasmons for near-field thermophotovoltaics

    Full text link
    The traditional approaches of exciting plasmons consist of using electrons (eg: electron energy loss spectroscopy) or light (Kretchman and Otto geometry) while more recently plasmons have been excited even by single photons. A different approach: thermal excitation of a plasmon resonance at high temperatures using alternate plasmonic media was proposed by S. Molesky et.al., Opt. Exp. 21.101, A96-A110, (2013). Here, we show how the long-standing search for a high temperature narrow band near-field emitter for thermophotovoltaics can be fulfilled by high temperature plasmonics. We also describe how to control Wein's displacement law in the near-field using high temperature epsilon-near-zero metamaterials. Finally, we show that our work opens up an interesting direction of research for the field of slow light: thermal emission control

    Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios

    Get PDF
    • Understanding controls over plant–atmosphere CO2 exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO2 assimilation rate (ATree) in a subalpine forest ecosystem. • We analysed the carbon isotope ratio (δ13C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate ATree. Estimates of ATree for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. • A sensitivity analysis showed that estimates of ATree were more sensitive to dynamics in E than δ13C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. • The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales
    • …
    corecore