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ABSTRACT

Path representations are critical in a variety of transportation applications, such as estimating path
ranking in path recommendation systems and estimating path travel time in navigation systems.
Existing studies often learn task-specific path representations in a supervised manner, which require a
large amount of labeled training data and generalize poorly to other tasks. We propose an unsupervised
learning framework Path InfoMax (PIM) to learn generic path representations that work for different
downstream tasks. We first propose a curriculum negative sampling method, for each input path, to
generate a small amount of negative paths, by following the principles of curriculum learning. Next,
PIM employs mutual information maximization to learn path representations from both a global and
a local view. In the global view, PIM distinguishes the representations of the input paths from those
of the negative paths. In the local view, PIM distinguishes the input path representations from the
representations of the nodes that appear only in the negative paths. This enables the learned path
representations encode both global and local information at different scales. Extensive experiments on
two downstream tasks, ranking score estimation and travel time estimation, using two road network
datasets suggest that PIM significantly outperforms other unsupervised methods and is also able to be
used as a pre-training method to enhance supervised path representation learning.

Keywords Path Representation Learning · Unsupervised Learning ·Mutual Information Maximization

1 Introduction

Path representations are crucial for various transportation applications, e.g., travel cost estimation Hu et al. [2020],
Pedersen et al. [2020a], routing Guo et al. [2020], Pedersen et al. [2020b], path recommendation Yang and Yang [2020],
Guo et al. [2018], and traffic analysis Hu et al. [2019], Cirstea et al. [2021]. Path representation learning (PRL) aims to
obtain distinguishable path representations for different paths in a transportation network and hence facilitating various
downstream applications. Existing studies on PRL often learn path representations in a supervised manner, which has
two limitations. First, they require a large amount of labelled training data. Second, the learned path representations are
task-specific, e.g., working well for the task with labels, but generalize poorly to other tasks. The two limitations restrict
supervised path representation learning from broader usage, thus calling for unsupervised path representation learning.

∗Corresponding Author: Jilin Hu
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Although unsupervised graph representation learning methods exist, they are not designed to capture representations of
paths. Node representation learning Tang et al. [2015], Grover and Leskovec [2016] learns representations for individual
nodes in a graph but does not consider paths, i.e., sequences of nodes. Simply aggregating the node representations of
the nodes in a path fails to capture the sequential information in paths. Whole graph representation learning Sun et al.
[2020] learns representations for different graphs, while path representation learning considers different paths from the
same graph. In addition, unsupervised graph representation learning often utilize random negative sampling to enable
training, which is ineffective for path representation learning.

We propose an unsupervised path representation learning framework Path InfoMax (PIM), including a curriculum
negative sampling method and a path representation learning method. First, we propose a curriculum negative sampling
strategy to generate a small number of negative paths for an input path. Instead of randomly select other input paths as
negative paths, the strategy follows the principles of curriculum learning Bengio et al. [2009] to first generate paths
that are largely different from the input path and thus are easy to be distinguished from the input path. Then, we
gradually generate paths that are increasingly similar to the input path and thus are more difficult to be distinguished
from the input path. The proposed curriculum negative sampling facilitates effective learning of distinguishable path
representations.

Next, we propose two different discriminators, a path-path discriminator and a path-node discriminator, to jointly
learn path representations. The path-path discriminator captures the representation differences between an input path
and its negative paths, which we refer to as a global view. The path-node discriminator captures the representation
difference between an input path and the representations of the nodes that only appear in its negative paths, which we
refer to as a local view. The two discriminators ensure the quality of the learned path representations, because they are
distinguishable from not only the representations of negative paths from a global view but also the representations of the
nodes in negative paths from a local view. To the best of our knowledge, PIM is the first work that studies unsupervised
path representation learning. First, we propose a curriculum negative sampling strategy for path representation learning.
Second, we propose the path-path and path-node discriminators to learn jointly path representations from a global and a
local view. Third, we conduct extensive experiments on two data sets with two downstream tasks to demonstrate the
effectiveness of PIM. We make the following contributions.

1. We propose a curriculum negative sampling strategy for path representation learning.

2. We propose the path-path and path-node discriminators to learn jointly path representations from a global and
a local view.

3. We conduct extensive experiments on two data sets with two downstream tasks to demonstrate the effectiveness
of PIM.

2 Related Work

2.1 Path Representation Learning.

Existing proposals on path representation learning are all under the supervised learning setting. Such proposals often
require large amount of labeled training data and the learned path representations cannot be easily reused for other
tasks. For example, Deepcas Li et al. [2017], ProxEmbed Liu et al. [2017], and PathRank Yang et al. [2020], Yang and
Yang [2020] employ different kinds of RNNs to combine node representations of the nodes in a path to obtain a path
representation. Then, the training is performed in an end-to-end fashion by using the labeled training data. Instead, we
propose an unsupervised path representation learning framework PIM that does not require labeled training data and
it generalizes nicely to multiple downstream tasks (cf. Table 1 in Section 4.2.1). In addition, PIM can be used as a
pre-training method to enhance existing supervised path representation learning (cf. Figure 3 in Section 4.2.2). An
unsupervised trajectory representation learning method transforms trajectories into images and thus do not apply on
paths in graphs Kieu et al. [2018].

2.2 Mutual Information Maximization on Graphs.

Motivated by Deep InfoMax Hjelm et al. [2019], mutual information maximization has been applied for unsu-
pervised graph representation learning. Deep Graph Infomax (DGI) Velickovic et al. [2019] and Graph Mutual
Information (GMI) Peng et al. [2020] learn node representations and InfoGraph Sun et al. [2020] learns whole graph
representations. Here, negative samples are often randomly drawn from a different graph and the mutual information
only considers a local view, e.g., a node representation vs. a graph representation. In PIM, we propose a curriculum
negative sample strategy to generate negative paths with different overlapping nodes with the input paths from the same
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Figure 1. PIM Overview. The Path Encoder takes as input the initial view IV (Pi) of input path Pi and the initial view IV (P̄j)
of negative path P̄j , and returns their representations pi and p̄j , respectively. The Path-Path Discriminator takes as input a pair of
path representations and decides whether they are from the same path. A positive pair, e.g., (pi, IV (Pi)), refers to two different
representation views of the same input path Pi. A negative pair, e.g., (pi, p̄j), refers to the path representations of an input path vs.
its negative path. The Path-Node Discriminator takes as input a (input path representation, node feature vector) pair and decides
whether the node is from the input path. A positive pair, e.g., (pi, v2), represents the path representation of Pi and a node feature
vector of node v2 that only appears in Pi. A negative pair, e.g., (pi, v5), represents the path representation of the input path and a
node feature vector of node v5 that only appears in the negative path.

graph, which facilitates training. Other advanced negative sampling approaches exist Wang et al. [2018], Ding et al.
[2020], but they are not proposed for graphs and do not follow curriculum learning. In addition, we compute mutual
information on both a local view (i.e., the representations of input paths vs. the node representations of negative paths)
and a global view (i.e., the representations of input paths vs. negative paths) and use them jointly to train the model,
which improves accuracy.

sectionPreliminaries

Graph. We consider a directed graph G = (V,E), where V is the node set and E is the edge set and we have |V| = N
and |E| = M . Each node Vi ∈ V is associated with a node feature vector vi ∈ RD.

Path. A path P = 〈V1, V2, . . . , VZ〉 is a sequence of nodes, where Z is the path length and P.s = V1 and P.d = VZ
are the source and destination of path P , respectively. Each pair of adjacent nodes (Vk, Vk+1) is connected by an edge
in E, 1 ≤ k < Z. We use IV (P ) ∈ RZ×D to represent the concatenation of the node feature vectors of the nodes in
path P . We call IV (Pi) the initial view of path Pi.

Problem Definition. Given a set of path P in graph G, Path Representation Learning (PRL) aims at learning a path
representation vector pi ∈ RD′

for each path Pi ∈ P. Formally, PRL learns a path encoder PEψ that takes as input the
initial view IV (Pi) of path Pi, i.e., the node features of the nodes in path Pi, and outputs its path representation vector
pi.

PEψ : RZ×D → RD
′
, (1)

where ψ indicates the learnable parameters for the path encoder, e.g., weights in a neural network, Z is the length of
path Pi, and D′ � Z ×D is an integer indicating the dimension of the learned path representation vector pi.

The learned path representation vectors are supposed to support a variety of downstream tasks, e.g., path ranking and
path travel time estimation.

3 Path InfoMax

Figure 1 offers an overview of the proposed framework Path InfoMax (PIM). PIM employs contrastive learning,
specifically mutual information maximization, to train the path encoder to produce path representations without
requiring task-specific labels.

The path encoder takes as input the initial view of an input path and outputs its path representation (cf. Sec. 3.1).
Training the path encoder is supported by a path-path discriminator and a path-node discriminator using negative
samples. To this end, we first introduce the curriculum negative sampling strategy to generate negative paths (cf.
Sec. 3.2). Then, the path-path discriminator guides the path encoder to produce path representations such that the
path representations of input paths can be distinguished from the path representations of negative paths (cf. Sec. 3.3).
In addition, the path-node discriminator guides the path encoder to produce path representations such that the path
representations of input paths can be distinguished from the node features of the nodes that only appear in the negative
paths (cf. Sec. 3.4). Finally, we discuss the final training objectives of PIM.

3
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Figure 2. Curriculum Negative Sampling.

3.1 Path Encoder

Since a path consists of a sequence of nodes, we use a model that is able to encode sequential data, e.g., a recurrent
neural network Hochreiter and Schmidhuber [1997], Cho et al. [2014] or a Transformer Vaswani et al. [2017] as the
path encoder PEψ , where ψ represents the parameters to be learned for the path encoder.

Given a path Pi = 〈V1, V2, . . . , VZ〉, we use its initial view IV (Pi) ∈ RZ×D as the input to the path encoder, which
returns its path representation vector pi ∈ RD′

.

3.2 Curriculum Negative Sampling

Motivated by curriculum learning Bengio et al. [2009], we propose a curriculum negative sampling method to generate
negative samples. The idea behind curriculum learning is that we start to train a model with easier samples first, and
then gradually increase the difficulty levels. In our setting, we first generate negative paths that are different from
the input path, e.g., paths without any overlapping nodes with the input path. In this case, it can be easy to train a
path encoder that returns distinguishable representations of the input path and the negative paths. Then, we gradually
generate negative paths that are increasingly similar to the input path, e.g., sharing the same source and destination with
the input path and with increasingly overlapping nodes. This makes more difficult for the path encoder to generate
distinguishable path representations. Figure 2 shows three negative paths P̄1, P̄2, and P̄3 with increasingly difficulties
for input path P1, along with the underlying road network graph.

Specifically, for each input path P1, we first randomly select a path from the path set P as the first negative path. Next,
we use the source and the destination of P1 as the input to call the top-k diversified shortest path algorithm Liu et al.
[2018] to generate paths that share the same source and destination of P1. This algorithm allows us to set different
diversity thresholds, enabling us to generate negative paths with different overlapping nodes with the input path.

3.3 Global Mutual Information Maximization

We proceed to the learning of the path encoder using the negative paths. We first consider a global view of the path
representations. We expect that the learned path representations are distinguishable from the path representations of the
negative paths.

To this end, we first construct negative and positive pairs for training a path-path discriminator DPP
ω1

. In a negative pair
〈(pi, p̄j),−〉, pi and p̄j represent the path representations of input path Pi and a negative path P̄j , respectively, which
are both returned by the path encoder PEψ. In a positive pair 〈(pi, IV (Pi),+〉, pi is still the path representations of
input path Pi returned by the path encoder and IV (Pi) is the initial view of path Pi (cf. Section 3.1). Here, pi and
IV (Pi) represent two different views, i.e., a view from the path encoder vs. a view from the node features, of the same
input path Pi. Figure 1 shows examples of a negative and a positive pair.

Next, we use mutual information maximization to train the path-path discriminator DPP
ω1

such that it is able to make
a binary classification on the negative vs. positive pairs. Specifically, we aim at maximizing the estimated mutual
information (MI) over the positive and negative pairs.

arg max
ψ,ω1

∑
Pi∈P

Iψ,ω1(pi,NPi),

4
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where Iψ,ω1(·, ·) is the MI estimator modeled by the path-path discriminator DPP
ω1

that is parameterized by parameters
ω1 and the path encoder PEψ that is parameterized by parameters ψ. Path Pi is an input path from P and pi is its path
representation returned by the path encoder. NPi includes the negative paths of Pi. Following Velickovic et al. [2019],
Hjelm et al. [2019], we use a noise-contrastive type objective with a standard binary cross-entropy loss on the positive
pairs and the negative pairs, as shown in Equation 2.

Iψ,ω1 (pi,NPi) :=
1

1 + |NPi|
(EP

[
logDPP

ω1
(pi, IV (Pi))

]
+∑

P̄j∈NPi

ENPi

[
log
(

1−DPP
ω1

(pi, p̄j)
)]

)
(2)

Here, we use EP and ENPi
to denote expectations w.r.t. the empirical probability distribution of the input paths and the

negative paths. Note that pi and p̄j are the path representations returned by the path encoder PEψ . Thus, maximizing
the MI estimator enables the training of both the path encoder (i.e., parameters ψ) and the path-path discriminator (i.e.,
parameters ω1).

3.4 Local Mutual Information Maximization

We proceed to consider a local view of the path representations. We expect that the learned path representations are
distinguishable from the node feature vectors of the nodes from input vs. negative paths. This is particularly important
when distinguishing two paths with significant overlapping nodes. We introduce a positive node set Xi that includes
nodes appearing only in the input path Pi but not the negative paths and a negative node set Yi that includes nodes
appearing only in the negative paths but not the input path Pi. We then construct negative and positive pairs for training
a path-node discriminator DPN

ω2
. In a negative pair 〈(pi, vj),−〉, pi represents the path representations of input path Pi,

returned by the path encoder PEψ; vj represents the node feature vector of a negative node Vj ∈ Yi. Similarly, in a
positive pair 〈(pi, vk),+〉, vk represents the node feature vector of a positive node Vk ∈ Xi. Figure 1 shows examples
of two negative and two positive such pairs for the path-node discriminator.

Similar to the path-path discriminator training, we also employ mutual information maximization to train the path-node
discriminator DPN

ω2
. In particular, we have

arg max
ψ,ω2

∑
Pi∈P

Iψ,ω2
(pi,Xi ∪ Yi),

where Iψ,ω2
is the MI estimator modeled by the path-node discriminator DPN

ω2
that is parameterized by parameters ω2

and the path encoder PEψ that is parameterized by parameters ψ. We use a noise-contrastive with a BCE loss, similar
to Equation 2, to compute Iψ,ω2(pi,X ∪ Y) as follows.

Iψ,ω2(pi,Xi ∪ Yi) :=
1

|Xi ∪ Yi|
(
∑
vk∈Xi

EXi

[
logDPNω2

(pi, vk)
]

+

∑
vj∈Yi

EYi

[
log
(

1−DPN
ω2

(pi, vj)
)]

)
(3)

3.5 Maximization of PIM

We combine both the global and local mutual information maximization when training the final PIM model, see below.

arg max
ψ,ω1,ω2

∑
Pi∈P

(Iψ,ω1(pi,NPi) + Iψ,ω2(pi,Xi ∪ Yi)) .

4 Experiments

We conduct experiments to investigate the effectiveness of the proposed unsupervised path representation learning
framework PIM on two downstream tasks using two data sets. In addition, we also demonstrate that PIM is able to use
as a pre-training method to enhance supervised path representation learning.
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4.1 Experimental Setup

4.1.1 Road Network and Paths

We obtain two road network graphs from OpenStreetMap. The first is from Aalborg, Denmark, consisting of 8,893
nodes and 10,045 edges. The second is from Harbin, China, consisting of 5,796 nodes and 8,498 edges. We also obtain
two substantial GPS trajectory data sets on the two road networks. We consider 52,494 paths in the Aalborg network
and 37,079 paths in the Harbin network.

4.1.2 Downstream Tasks

Path Travel Time Estimation. Each path is associated with its travel time (seconds) obtained from trajectories. We
aim at building a regression model to estimate the travel time of paths. We evaluate the accuracy of the estimations by
Mean Absolute Error (MAE), Mean Absolute Relative Error (MARE) and Mean Absolute Percentage Error (MAPE).

Path Ranking. Given a set of paths, which often share the same source and destination, each path is associated with
a ranking score in range [0, 1]. The ranking scores are obtained with the help of trajectories by following an existing
study Yang et al. [2020]. In path ranking, we aim at building a regression model to estimate the ranking scores of the
paths. To evaluate the accuracy of the estimated ranking scores, we not only report the MAE of the estimated ranking
scores but also use Kendall rank correlation coefficient (denoted by τ ) and Spearman’s rank correlation coefficient
(denoted by ρ) to measure the consistency between the ranking derived by the estimated ranking scores vs. the ranking
derived by the ground truth ranking scores. Smaller MAE and higher τ and ρ values indicate higher accuracy.

4.1.3 Baselines

We compare PIM with seven baseline methods.

• Node2vec Grover and Leskovec [2016], Deep Graph InfoMax (DGI) Velickovic et al. [2019], Graphical
Mutual Information Maximization (GMI) Peng et al. [2020] are three unsupervised node representation
learning models, which output the node representation for each node in a graph. We use the average of the
node representations of the nodes in a path to get the path representation of the path. We also consider using
concatenation instead of average, but resulting worse accuracy.

• Memory Bank (MB) Wu et al. [2018] is an unsupervised learning approach to obtain representations from
high-dimensional data. It uses a memory bank to achieve the negative samples from current batch to train an
encoder, then gets the representation based on contrastive loss. We re-implement MB with an LSTM encoder
to better capture the sequential information to get the path representations.

• InfoGraph Sun et al. [2020] is an unsupervised whole graph representation learning model. Here, we treat a
path as a graph to learn the path representation.

• BERT Devlin et al. [2019] is an unsupervised language representation learning model. To enable training, we
(1) treat a path as a sentence and mask some nodes in the path; and (2) split a path P into two sub-paths P1

and P2, and consider (P1, P2) as a valid Q&A pair and (P2, P1) as an invalid Q&A pair because the former
keeps a meaningful order while the latter does not.

• PathRank Yang et al. [2020] is a supervised path representation learning model based on GRU. PathRank
takes into account the labels from a specific downstream task to obtain path representations.

Among these baselines, Node2vec, DGI, GMI, MB, InfoGraph, and BERT are unsupervised learning approaches, which
do not employ labels from specific downstream tasks to produce path representations. In contrast, PathRank is a
supervised learning approach, where it employ labels from specific downstream tasks to produce path representations,
meaning that the obtained path representations are different when using labels from different downstream tasks.

4.1.4 Regression Model

For all unsupervised learning approaches, we first obtain a task-independent path representation and then apply a
regression model to solve different downstream tasks using task-specific labels. In the experiments, we choose Gaussian
Process Regressor (GPR) to make travel time and ranking score estimation. We randomly choose 85%, 10%, and 5% of
the paths as the training, validation, and test sets.

6
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Method
Aalborg Harbin
Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ MAE MARE MAPE MAE τ ρ

Node2vec 121.43 0.27 31.04 0.18 0.66 0.70 258.91 0.22 23.17 0.15 0.70 0.72
DGI 192.63 0.42 82.44 0.54 0.49 0.52 528.71 0.39 86.53 0.21 0.59 0.60
GMI 136.58 0.30 50.81 0.23 0.58 0.61 979.68 0.73 192.45 0.24 0.55 0.56
MB 243.97 0.53 84.17 0.35 0.34 0.38 533.41 0.40 86.01 0.27 0.31 0.34
BERT 254.17 0.54 61.61 0.36 0.38 0.39 514.95 0.57 49.80 0.28 0.45 0.46
InfoGraph 132.28 0.29 39.47 0.17 0.69 0.73 391.45 0.44 44.60 0.29 0.68 0.72
PIM 76.10 0.16 17.28 0.12 0.72 0.76 125.76 0.14 13.73 0.11 0.75 0.79

Table 1. Overall Accuracy on Travel Time Estimation and Ranking Score Estimation.

4.1.5 Implementation Details

We use an LSTM as the path encoder. We use node2vec Grover and Leskovec [2016], an unsupervised node repre-
sentation learning method, to obtain a 128 dimensional node feature vector for each node, i.e., D = 128. We set the
path representation size D′ = 128. In the curriculum negative sampling, for each input path, we generate four negative
paths—the first two paths are randomly selected from P and the third and the fourth paths are two paths returned by
the top-k diversified shortest paths with different overlapping nodes with the input path. We use Adam Kingma and
Ba [2015] for optimization with learning rate of 0.001. All algorithms are implemented in Pytorch 1.7.1. We conduct
experiments on Ubuntu 18.04.5 LTS, with 40 Intel(R) Xeon(R) Gold 5215 CPUs @ 2.50GHz and four Quadro RTX
8000 GPU cards. Code is available at https://github.com/Sean-Bin-Yang/Path-InfoMax.git.

4.2 Experimental Results

4.2.1 Overall accuracy on both downstream tasks

Table 1 shows the results on travel time and ranking score estimation. PIM consistently outperforms all baselines on
both tasks and on both data sets. Node2vec, DGI, and GMI fail to capture the dependencies among node feature vectors
in paths. In contrast, PIM considers such dependencies by using the LSTM based path encoder. In addition, the two
discriminators further improve the accuracy.

InfoGraph implicitly considers node feature vector sequences. However, the discriminator in InfoGraph only considers
the local view. In addition, InfoGraph considers other paths in the same batch as negative samples, whereas PIM
employs curriculum negative sampling to generate negative samples. PIM outperforms InfoGraph suggests that the
proposed curriculum negative sampling and jointly consider both local and global views are effective.

Although MB and BERT also capture dependencies among the node feature vectors in paths, such methods only achieve
relatively poor accuracy. This is because MB often requires large amount of negative samples (e.g., more than 256),
which is not feasible in our setting. Although the unsupervised training strategy in BERT works well for NLP, it does
not fit our problem setting on learning path representations.

4.2.2 Using PIM as a Pre-training Method

In this experiment, we consider PIM as a pre-training method for the supervised method PathRank. PathRank employs
an GRU that takes as input node feature vectors in a path and predicts travel time or ranking scores. To use PIM as
a pre-training method for PathRank, we use a GRU based path encoder. Then, we first train PIM in an unsupervsied
manner, and then use the learned parameters in the GRU path encoder to initialize the GRU in PathRank. Finally, we
use the labelled training paths to fine tune PathRank.

Figure 3 shows the travel time estimation performance of PathRank with vs. without pre-training on both data sets.
When not using pre-training, we train PathRank using 10K labelled training paths. We observe that: (1) when using
pre-training, we are able to achieve the same accuracy of the non-pre-training PathRank using less labelled training
paths, e.g., ca. 7K for Aalborg and 6K for Harbin. (2) when using 10K labelled training paths, the pre-training PathRank
achieves higher accuracy than the non-pre-training PathRank. We observe similar results on the other task of path
ranking, suggesting that PIM can be used as a pre-training method to enhance supervised methods.

4.3 Ablation Studies

7
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(a) Travel Time Estimation (b) Path Ranking

Figure 3. Effects of Pre-training.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Global 237.92 0.51 85.88 0.34 0.22 0.25
Local 118.03 0.25 26.20 0.14 0.70 0.74
Joint 76.10 0.16 17.28 0.12 0.72 0.76

Table 2. Effects of Local and Global MI Maximization, Aalborg.

4.3.1 Impact of Local and Global MI Maximization

We investigate the impact of jointly using both path-path and path-node discriminators to consider both the local and
global MI maximization. We consider two variants of PIM where (1) we only use the path-path discriminator to
maximize the global MI and (2) we only use the path-node discriminator to maximize the local MI. Table 4 shows that
jointly maximizing both the local and global MI achieves the best accuracy, which justifies our design choices of using
both the path-path and path-node discriminators.

4.3.2 Impact of Curriculum Negative Sample Strategy

To investigate the effectiveness of the proposed curriculum negative sample strategy, we compare it with the following
two strategies.

1. Random only: it randomly selects paths from P.
2. Top-k only: it employs the top-k diversified shortest path algorithms to generate negative paths sharing the

same origin and destination with the input path with different overlapping nodes.

To make a fair comparison, we use each strategy to generate the same number of negative paths, i.e., 4. Table 3 shows
that the top-k only strategy is better than random only, suggesting that it is important to distinguish the representations
of input paths vs. paths sharing the same origin and destination. The proposed curriculum negative sampling strategy
achieves the best accuracy, suggesting that training PIM from easy to hard negative paths help further improves accuracy.

4.3.3 Impact of Negative Path Numbers

We investigate the impact of using different numbers of negative paths. We vary the number of negative paths K from
1, 2, 3, to 4. Recall that when using curriculum negative sampling, the first two paths are from P and the last two paths
are from the top-k diversified shortest path finding algorithm. Table 4 suggests that when using more negative paths, the
accuracy improves. The accuracy improvements from 2 to 3 is the largest, suggesting that the top-k algorithm is very
effective on generating high quality negative paths.

4.3.4 Impact of Positive/Negative Nodes in local MI

To study the impact of positive and negative nodes, we consider cases where we only use 20%, 40%, 60%, 80% of
positive or negative nodes. Table 5 shows that the accuracy increases when using more less positive and negative nodes.
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Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Rand. 101.16 0.22 23.51 0.14 0.65 0.69
Top-k 100.87 0.22 22.31 0.13 0.72 0.75
Curr. 76.10 0.16 17.28 0.12 0.72 0.76

Table 3. Effects of Curriculum Negative Sample Strategy, Aalborg.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

K=1 119.77 0.29 32.91 0.19 0.58 0.63
K=2 107.46 0.26 29.22 0.18 0.59 0.63
K=3 87.58 0.19 20.00 0.12 0.71 0.74
K=4 76.10 0.16 17.28 0.12 0.72 0.76

Table 4. Effects of Negative Path Numbers, Aalborg.

Posi.
Nods.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

20% 114.31 0.25 24.92 0.20 0.65 0.70
40% 111.33 0.24 24.08 0.16 0.66 0.70
60% 104.57 0.23 22.94 0.14 0.68 0.71
80% 101.31 0.23 22.56 0.13 0.68 0.72
100% 76.10 0.16 17.28 0.12 0.72 0.76
Neg.
Nods.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

20% 130.90 0.29 28.21 0.19 0.60 0.65
40% 110.86 0.24 25.30 0.15 0.67 0.70
60% 105.70 0.23 24.01 0.13 0.67 0.71
80% 102.80 0.22 23.35 0.13 0.68 0.72
100% 76.10 0.16 17.28 0.12 0.72 0.76

Table 5. Effects of Positive / Negative Nodes, Aalborg.

4.3.5 Impact of Travel Distances

We now study the effect of travel distance on the performance of different models for Aalborg dataset. To this end, we
group the paths into subgroups by their distances (km) [0,5),[5,10),[10,15),(≥15), and investigate the performance of
different models on each subgroup.

Figure 4 plots MAEs and Kendall rank correlation coefficient (τ ) of InfoGraph, BERT, MB and PIM w.r.t. travel
distance. we omit other baselines due to they can not directly achieve the path representation, which get the path
representation through average all node’s feature. Not surprisingly, MAEs, as shown in Fig 4(a), increase with the
distance since longer trips typically involve more road segments and have larger uncertainty and limited training data
set. It is worth noting that the performance difference between PIM and other baseline methods grows with the travel
distance. This result suggests that the PIM is more robust for estimating long paths’ travel time. In addition, we observe
that InfoGraph and MB, which both use contrastive learning, deteriorate as distance increases, suggesting that they are
not capable of estimating travel time for long paths. This is because that we have have less training data for long paths.
This influences InfoGraph and MB efficiently since these two methods are sensitive to number of negative samples.
While for Path Ranking, as shown in Fig 4(b), it does not follow the tendency of MAEs, but our PIM still achieves the
best results on each distance subgroups.

4.3.6 Computational performance of PIM

The learned PIM has ca. 297K parameters that takes ca. 10 MB. The average training time per path per epoch is 6.2 ms.
In testing, the runtime is 4.2 ms per path, which is within a reasonable response time. In additon, it takes 14.2 ms for
Aalborg city and 11.1 ms for Harbin city to run top-k shortest path finding.
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(a) Travel Time Estimation (b) Path Ranking

Figure 4. Impact on Travel Distance.

4.3.7 How PIM work on bigger graphs?

PIM takes as input a path and learns a representation for the path. Thus, since the input of PIM is a path, not a graph,
the size of the graph does not affect PIM, but the path length (i.e., the number of vertices in a path) affects. In the
experiments, we consider paths with up to 215 vertices (corresponding to ca. 40 km).

We have also worked on multi-objective route planning. Here, the goal is to identify the “best” path, e.g., the Pareto-
optimal path, which becomes more challenging on bigger graphs as the search space for finding the best path becomes
much larger. This is different from PIM, where paths are provided as inputs directly, e.g., already returned by routing
planning algorithms.

The curriculum negative sampling relies on the top-k diversified shortest path algorithm to generate negative paths. The
top-k diversified shortest path algorithm is tested on graphs with up to 2.4 million nodes. Thus, it is able to support
large graphs.

Other graph embedding methods can work with graphs with more than one million vertices. Specifically, node2vec is
tested on graphs with 1 million nodes and GMI is tested on graphs with 10 million nodes.

5 Conclusions

We study unsupervised path representation learning without using task-specific labels. We propose a novel contrastive
learning framework Path InfoMax (PIM), including a curriculum negative sampling strategy to generate a small number
of negative paths and a training mechanism that jointly learns distinguishable path representations from both a global and
a local view. Finally, we conduct experiments on two datasets with two downstream tasks. Experimental results show
that PIM outperforms other unsupervised methods and, as a pre-training method, PIM is able to enhance supervised
path representation learning.
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