13 research outputs found

    Science Mission Directorate TechPort Records for 2019 STI-DAA Release

    Get PDF
    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs

    2018 Science Mission Directorate Technology Highlights

    Get PDF
    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs

    Advancing Technology for NASA Science with Small Spacecraft

    Get PDF
    NASA鈥檚 Science Mission Directorate (SMD) is strategically promoting the use of small spacecraft to advance its science portfolio. Related to this effort are an increasing number of targeted investments in instrument- and platform-based technologies, which are critical for achieving successful science missions with small spacecraft. Beginning in 2012, SMD鈥檚 technology programs began to accommodate the use of CubeSats for validation of new science instruments. Since that time the Directorate has expanded the use of CubeSats and small satellites not only for validating instruments for future, conventional-class missions but also to enable a new class of focused science missions that fill an important role in democratizing scientific discovery. To enable such missions, the Directorate has recently modified the portfolios of the Agency鈥檚 technology programs to accommodate this need. This paper outlines some of the processes that are used to craft the technology solicitations and discusses some of the recent selections that have been made. It is intended to help future proposers of small satellite missions to better understand the opportunities available through NASA technology solicitations

    Anticipated Changes in Conducting Scientific Data-Analysis Research in the Big-Data Era

    Get PDF
    A Big-Data environment is one that is capable of orchestrating quick-turnaround analyses involving large volumes of data for numerous simultaneous users. Based on our experiences with a prototype Big-Data analysis environment, we anticipate some important changes in research behaviors and processes while conducting scientific data-analysis research in the near future as such Big-Data environments become the mainstream. The first anticipated change will be the reduced effort and difficulty in most parts of the data management process. A Big-Data analysis environment is likely to house most of the data required for a particular research discipline along with appropriate analysis capabilities. This will reduce the need for researchers to download local copies of data. In turn, this also reduces the need for compute and storage procurement by individual researchers or groups, as well as associated maintenance and management afterwards. It is almost certain that Big-Data environments will require a different "programming language" to fully exploit the latent potential. In addition, the process of extending the environment to provide new analysis capabilities will likely be more involved than, say, compiling a piece of new or revised code.We thus anticipate that researchers will require support from dedicated organizations associated with the environment that are composed of professional software engineers and data scientists. A major benefit will likely be that such extensions are of higherquality and broader applicability than ad hoc changes by physical scientists. Another anticipated significant change is improved collaboration among the researchers using the same environment. Since the environment is homogeneous within itself, many barriers to collaboration are minimized or eliminated. For example, data and analysis algorithms can be seamlessly shared, reused and re-purposed. In conclusion, we will be able to achieve a new level of scientific productivity in the Big-Data analysis environments

    NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual

    Get PDF
    This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed

    Technical report series on global modeling and data assimilation. Volume 6: A multiyear assimilation with the GEOS-1 system: Overview and results

    Get PDF
    The Data Assimilation Office (DAO) at Goddard Space Flight Center has produced a multiyear global assimilated data set with version 1 of the Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS). One of the main goals of this project, in addition to benchmarking the GEOS-1 system, was to produce a research quality data set suitable for the study of short-term climate variability. The output, which is global and gridded, includes all prognostic fields and a large number of diagnostic quantities such as precipitation, latent heating, and surface fluxes. Output is provided four times daily with selected quantities available eight times per day. Information about the observations input to the GEOS-1 DAS is provided in terms of maps of spatial coverage, bar graphs of data counts, and tables of all time periods with significant data gaps. The purpose of this document is to serve as a users' guide to NASA's first multiyear assimilated data set and to provide an early look at the quality of the output. Documentation is provided on all the data archives, including sample read programs and methods of data access. Extensive comparisons are made with the corresponding operational European Center for Medium-Range Weather Forecasts analyses, as well as various in situ and satellite observations. This document is also intended to alert users of the data about potential limitations of assimilated data, in general, and the GEOS-1 data, in particular. Results are presented for the period March 1985-February 1990
    corecore