1,510 research outputs found
Small-body deflection techniques using spacecraft: techniques in simulating the fate of ejecta
We define a set of procedures to numerically study the fate of ejecta
produced by the impact of an artificial projectile with the aim of deflecting
an asteroid. Here we develop a simplified, idealized model of impact conditions
that can be adapted to fit the details of specific deflection-test scenarios,
such as what is being proposed for the AIDA project. Ongoing studies based upon
the methodology described here can be used to inform observational strategies
and safety conditions for an observing spacecraft. To account for ejecta
evolution, the numerical strategies we are employing are varied and include a
large N-Body component, a smoothed-particle hydrodynamics (SPH) component, and
an application of impactor scaling laws. Simulations that use SPH-derived
initial conditions show high-speed ejecta escaping at low angles of
inclination, and very slowly moving ejecta lofting off the surface at higher
inclination angles, some of which re-impacts the small-body surface. We are
currently investigating the realism of this and other models' behaviors. Next
steps will include the addition of solar perturbations to the model and
applying the protocol developed here directly to specific potential mission
concepts such as the proposed AIDA scenario.Comment: 19 pages, 11 figures, accepted for publication in Advances in Space
Research, Special Issue: Asteroids & Space Debri
On combining triads and unrelated subjects data in candidate gene studies: an application to data on testicular cancer.
Combining data collected from different sources is a cost-effective and time-efficient approach for enhancing the statistical efficiency in estimating weak-to-modest genetic effects or gene-gene or gene-environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family-based and unrelated individual-based (e.g., population-based case-control design). In this paper, we describe a general method that permits the joint estimation of effects on disease risk of genes, environmental factors, and gene-gene/gene-environment interactions under a hybrid design that includes cases, parents of cases, and unrelated individuals. We provide both asymptotic theory and statistical inference. Extensive simulation experiments demonstrate that the proposed estimation and inferential methods perform well in realistic settings. We illustrate the method by an application to a study of testicular cancer
Performance of Trajectory Models with Wind Uncertainty
Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty
The nuclear pore complex has entered the atomic age
Nuclear pore complexes (NPCs) perforate the nuclear envelope and represent the exclusive passageway into and out of the nucleus of the eukaryotic cell. Apart from their essential transport function, components of the NPC have important, direct roles in nuclear organization and in gene regulation. Because of its central role in cell biology, it is of considerable interest to determine the NPC structure at atomic resolution. The complexity of these large, 40–60 MDa protein assemblies has for decades limited such structural studies. More recently, exploiting the intrinsic modularity of the NPC, structural biologists are making progress toward understanding this nanomachine in molecular detail. Structures of building blocks of the stable, architectural scaffold of the NPC have been solved, and distinct models for their assembly proposed. Here we review the status of the field and lay out the challenges and the next steps toward a full understanding of the NPC at atomic resolution.Pew Charitable Trusts (Scholars Program)National Institutes of Health (U.S.) (Grant GM077537
Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape
We consider the cosmological dynamics associated with volume weighted
measures of eternal inflation, in the Bousso-Polchinski model of the string
theory landscape. We find that this measure predicts that observers are most
likely to find themselves in low energy vacua with one flux considerably larger
than the rest. Furthermore, it allows for a satisfactory anthropic explanation
of the cosmological constant problem by producing a smooth, and approximately
constant, distribution of potentially observable values of Lambda. The low
energy vacua selected by this measure are often short lived. If we require
anthropically acceptable vacua to have a minimum life-time of 10 billion years,
then for reasonable parameters a typical observer should expect their vacuum to
have a life-time of approximately 12 billion years. This prediction is model
dependent, but may point toward a solution to the coincidence problem of
cosmology.Comment: 35 pages, 8 figure
Recommended from our members
Collision Chains among the Terrestrial Planets. II. An Asymmetry between Earth and Venus
During the late stage of terrestrial planet formation, hit-and-run collisions are about as common as accretionary mergers, for expected velocities and angles of giant impacts. Average hit-and-runs leave two major remnants plus debris: the target and impactor, somewhat modified through erosion, escaping at lower relative velocity. Here we continue our study of the dynamical effects of such collisions. We compare the dynamical fates of intact runners that start from hit-and-runs with proto-Venus at 0.7 au and proto-Earth at 1.0 au. We follow the orbital evolutions of the runners, including the other terrestrial planets, Jupiter, and Saturn, in an N-body code. We find that the accretion of these runners can take ≳10 Myr (depending on the egress velocity of the first collision) and can involve successive collisions with the original target planet or with other planets. We treat successive collisions that the runner experiences using surrogate models from machine learning, as in previous work, and evolve subsequent hit-and-runs in a similar fashion. We identify asymmetries in the capture, loss, and interchange of runners in the growth of Venus and Earth. Hit-and-run is a more probable outcome at proto-Venus, being smaller and faster orbiting than proto-Earth. But Venus acts as a sink, eventually accreting most of its runners, assuming typical events, whereas proto-Earth loses about half, many of those continuing to Venus. This leads to a disparity in the style of late-stage accretion that could have led to significant differences in geology, composition, and satellite formation at Earth and Venus
Dealing with Uncertainties in Asteroid Deflection Demonstration Missions: NEOTwIST
Deflection missions to near-Earth asteroids will encounter non-negligible
uncertainties in the physical and orbital parameters of the target object. In
order to reliably assess future impact threat mitigation operations such
uncertainties have to be quantified and incorporated into the mission design.
The implementation of deflection demonstration missions offers the great
opportunity to test our current understanding of deflection relevant
uncertainties and their consequences, e.g., regarding kinetic impacts on
asteroid surfaces. In this contribution, we discuss the role of uncertainties
in the NEOTwIST asteroid deflection demonstration concept, a low-cost kinetic
impactor design elaborated in the framework of the NEOShield project. The aim
of NEOTwIST is to change the spin state of a known and well characterized
near-Earth object, in this case the asteroid (25143) Itokawa. Fast events such
as the production of the impact crater and ejecta are studied via cube-sat
chasers and a flyby vehicle. Long term changes, for instance, in the asteroid's
spin and orbit, can be assessed using ground based observations. We find that
such a mission can indeed provide valuable constraints on mitigation relevant
parameters. Furthermore, the here proposed kinetic impact scenarios can be
implemented within the next two decades without threatening Earth's safety.Comment: Accepted for publication in the proceedings of the IAUS 318 -
Asteroids: New Observations, New Models, held at the IAU General Assembly in
Honolulu, Hawaii, USA 201
- …