14 research outputs found

    Transferring ecosystem simulation codes to supercomputers

    Get PDF
    Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster

    Structural Elucidation of Cisoid and Transoid Cyclization Pathways of a Sesquiterpene Synthase Using 2-Fluorofarnesyl Diphosphates

    Get PDF
    Sesquiterpene skeletal complexity in nature originates from the enzyme-catalyzed ionization of (trans,trans)-farnesyl diphosphate (FPP) (1a) and subsequent cyclization along either 2,3-transoid or 2,3-cisoid farnesyl cation pathways. Tobacco 5-epi-aristolochene synthase (TEAS), a transoid synthase, produces cisoid products as a component of its minor product spectrum. To investigate the cryptic cisoid cyclization pathway in TEAS, we employed (cis,trans)-FPP (1b) as an alternative substrate. Strikingly, TEAS was catalytically robust in the enzymatic conversion of (cis,trans)-FPP (1b) to exclusively (≥99.5%) cisoid products. Further, crystallographic characterization of wild-type TEAS and a catalytically promiscuous mutant (M4 TEAS) with 2-fluoro analogues of both all-trans FPP (1a) and (cis,trans)-FPP (1b) revealed binding modes consistent with preorganization of the farnesyl chain. These results provide a structural glimpse into both cisoid and transoid cyclization pathways efficiently templated by a single enzyme active site, consistent with the recently elucidated stereochemistry of the cisoid products. Further, computational studies using density functional theory calculations reveal concerted, highly asynchronous cyclization pathways leading to the major cisoid cyclization products. The implications of these discoveries for expanded sesquiterpene diversity in nature are discussed

    The structural basis of chain length control in Rv1086

    No full text
    In Mycobacterium tuberculosis, two related Z-prenyl diphosphate synthases, E,Z-farnesyl diphosphate synthase (Rv1086) and decaprenyl diphosphate synthase (Rv2361c), work in series to synthesize decaprenyl phosphate (C(50)) from isopentenyl diphosphate and E-geranyl diphosphate. Decaprenyl phosphate plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan; thus, its synthesis has attracted considerable interest as a potential therapeutic target. Rv1086 is a unique prenyl diphosphate synthase in that it adds only one isoprene unit to geranyl diphosphate, generating the 15-carbon product (E,Z-farnesyl diphosphate). Rv2361c then adds a further seven isoprene units to E,Z-farnesyl diphosphate in a processive manner to generate the 50-carbon prenyl diphosphate, which is then dephosphorylated to generate a carrier for activated sugars. The molecular basis for chain-length discrimination by Rv1086 during synthesis is unknown. We also report the structure of apo Rv1086 with citronellyl diphosphate bound and with the product mimic E,E-farnesyl diphosphate bound. We report the structures of Rv2361c in the apo form, with isopentenyl diphosphate bound and with a substrate analogue, citronellyl diphosphate. The structures confirm the enzymes are very closely related. Detailed comparison reveals structural differences that account for chain-length control in Rv1086. We have tested this hypothesis and have identified a double mutant of Rv1086 that makes a range of longer lipid chains
    corecore