1,350 research outputs found

    Computational Difficulty of Computing the Density of States

    Get PDF
    We study the computational difficulty of computing the ground state degeneracy and the density of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by a class which we call #BQP, which is the counting version of the quantum complexity class QMA. We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies that computing the ground state degeneracy or the density of states for classical Hamiltonians is just as hard as it is for quantum Hamiltonians.Comment: v2: Accepted version. 9 pages, 1 figur

    Department "SPARC Detectors" in the FAIR@GSI Project

    Get PDF

    Water fragmentation by bare and dressed light ions with MeV energies: Fragment-ion-energy and time-of-flight distributions

    Get PDF
    The energy and time-of-flight distributions of water ionic fragments produced by impact of fast atoms and bare and dressed ions; namely, H+, Li0-3+, C1+, and C2+ are reported in this work. Fragment species as a function of emission energy and time-of-flight were recorded by using an electrostatic spectrometer and a time-of-flight mass spectrometer, respectively. An improved Coulomb explosion model coupled to a classical trajectory Monte Carlo (CTMC) simulation gave the energy centroids of the fragments for the dissociation channels resulting from the removal of two to five electrons from the water molecule. For the energy distribution ranging up to 50 eV, both the experiment and model reveal an isotropic production of multiple charged oxygen ions, as well as hydrogen ions. From the ion energy distribution, relative yields of the dissociation resulting from multiple ionization were obtained as a function of the charge state, as well as for several projectile energies. Multiple-ionization yields with charge state up to 4+, were extracted from the measurements of the time-of-flight spectra, focused on the production of single and multiple charged oxygen ions. The measurements were compared to ion-water collision experiments investigated at the keV energy range available in the literature, revealing differences and similarities in the fragment-ion energy distribution.Fil: Wolff, W.. Universidade Federal do Rio de Janeiro; BrasilFil: Luna, H.. Universidade Federal do Rio de Janeiro; BrasilFil: Schuch, R.. Alba Nova University Center; SueciaFil: Cariatore, Nelson Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Otranto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Turco, Federico. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Bernardi, Guillermo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Suárez, S.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    Projection, Spatial Correlations, and Anisotropies in a Large and Complete Sample of Abell Clusters

    Get PDF
    An analysis of R >= 1 Abell clusters is presented for samples containing recent redshifts from the MX Northern Abell Cluster Survey. The newly obtained redshifts from the MX Survey as well as those from the ESO Nearby Abell Cluster Survey (ENACS) provide the necessary data for the largest magnitude-limited correlation analysis of rich clusters in the entire sky (excluding the galactic plane) to date. We find 19.4 <= r_0 <= 23.3 h^-1Mpc, -1.92 <= gamma <= -1.83 for four different subsets of Abell/ACO clusters, including a large sample (N=104) of cD clusters. We have used this dataset to look for line-of-sight anisotropies within the Abell/ACO catalogs. We show that the strong anisotropies present in previously studied Abell cluster datasets are not present in our R >= 1 samples. There are, however, indications of residual anisotropies which we show are the result of two elongated superclusters, Ursa Majoris and Corona Borealis, whose axes lie near the line-of-sight. After rotating these superclusters so that their semi-major axes are prependicular to the line-of-sight, we find no anisotropies as indicated by the correlation function. The amplitude and slope of the two-point correlation function remain the same before and after these rotations. We also remove a subset of R = 1 Abell/ACO clusters that show sizable foreground/background galaxy contamination and again find no change in the amplitude or slope of the correlation function. We conclude that the correlation length of R >= 1 Abell clusters is not artificially enhanced by line-of-sight anisotropies.Comment: 37 pages, 8 figures, AASTeX Accepted for publication in Ap

    The Bose-Hubbard model is QMA-complete

    Full text link
    The Bose-Hubbard model is a system of interacting bosons that live on the vertices of a graph. The particles can move between adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle number is QMA-complete. In our QMA-hardness proof, we encode the history of an n-qubit computation in the subspace with at most one particle per site (i.e., hard-core bosons). This feature, along with the well-known mapping between hard-core bosons and spin systems, lets us prove a related result for a class of 2-local Hamiltonians defined by graphs that generalizes the XY model. By avoiding the use of perturbation theory in our analysis, we circumvent the need to multiply terms in the Hamiltonian by large coefficients
    corecore