81 research outputs found

    All Sky Camera for the CTA Atmospheric Calibration work package

    Get PDF
    The All Sky Camera (ASC) is a passive non-invasive imaging system for rapid night sky atmosphere monitoring. By design, the operation of the ASC will not affect the measurement procedure of the CTA observatory, for which we discuss its application in this report. The data collected should enable improved productivity and increased measurement time for the CTA observatory. The goal of ASC is to identify cloud position, atmosphere attenuation and time evolution of the sky condition, working within the CTA Central Calibration Facilities (CCF) group. Clouds and atmosphere monitoring may allow near-future prediction of the night-sky quality, helping scheduling. Also, in the case of partly cloudy night sky the cameras will identify the uncovered regions of the sky during the operation time, and define potential observable sources that can be measured. By doing so, a higher productivity of the CTA observatory measurements may be possible

    Outreach activities at the Pierre Auger Observatory

    Get PDF

    The ultra-high-energy cosmic-ray sky above 32 EeV viewed from the Pierre Auger Observatory

    Get PDF

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    Large-scale and multipolar anisotropies of cosmic rays detected at the Pierre Auger Observatory with energies above 4 EeV

    Get PDF

    The second knee in the cosmic ray spectrum observed with the surface detector of the Pierre Auger Observatory

    Get PDF

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax_{max}) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1-10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax_{max} with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy
    corecore