194 research outputs found

    Clinical placement and rurality of career commencement : a pilot study

    Get PDF
    This article reports on a project that aimed to discover whether rural placement can influence new graduates to take up rural positions, and what factors play a role in the decision-making. This pilot study reports the findings from a pre-survey of students (n = 110) who completed a questionnaire at the end of their rural placement in the Greater Green Triangle region, Australia. Findings are compared with matched questionnaire responses for students who subsequently completed a post-survey after graduation and who commenced work (n = 28). Rural placement appears to be associated with commencing rural practice after graduation. More graduates with an urban home address commenced rural practice than graduates with a rural home address who started their careers in the city. Longer placements may sway those with a city background to start work in a rural area.<br /

    The wavefront of the radio signal emitted by cosmic ray air showers

    Get PDF
    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 1017 10^{17}\,eV and zenith angles smaller than 45∘45^\circ, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ≳50 \gtrsim 50\,m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 140\,g/cm2^2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, XmaxX_\mathrm{max}, better than 30 30\,g/cm2^2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.Comment: accepted by JCA

    First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers

    Get PDF
    We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3*10^16 eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarised emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at energies above 10^17 eV.Comment: Accepted for publication in PR

    A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES

    Get PDF
    The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100 100\,PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10 %10\,\% - limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level
    • 

    corecore