29 research outputs found

    Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson’s Disease Dementia

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-23, pub-electronic 2021-08-25Publication status: PublishedFunder: Endocore Research Associates, NZ; Grant(s): 60147, 3626585; 3702766, JXU058, UOAX0815Funder: Maurice and Phyllis Paykel Trust; Grant(s): 3627036Funder: Maurice Wilkins Centre for Molecular Biodiscovery; Grant(s): 9341-3622506Funder: Oakley Mental Health Research Foundation; Grant(s): 3456030; 3627092; 3701339; 3703253; 3702870Funder: Neurological Foundation of New Zealand; Grant(s): N/AFunder: Medical Research Council; Grant(s): MR/L010445/1 and MR/L011093/1Funder: Alzheimer’s Research UK; Grant(s): ARUK-PPG2014B-7Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased in multiple brain regions in both Alzheimer’s disease (ADD) and Huntington’s disease (HD). The current investigation aimed to determine whether similar changes are also present in cases of Parkinson’s disease dementia (PDD), another age-related neurodegenerative condition, and whether such perturbations might occur in similar regions in these apparently different diseases. Brain tissue was obtained from nine confirmed cases of PDD and nine controls with a post-mortem delay of 26 h or less. Tissues were acquired from nine regions that show high, moderate, or low levels of neurodegeneration in PDD: the cerebellum, motor cortex, primary visual cortex, hippocampus, substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons. A targeted ultra–high performance liquid chromatography—tandem mass spectrometry (UHPLC-MS/MS) approach was used to quantify pantothenic acid in these tissues. Pantothenic acid was significantly decreased in the cerebellum (p = 0.008), substantia nigra (p = 0.02), and medulla (p = 0.008) of PDD cases. These findings mirror the significant decreases in the cerebellum of both ADD and HD cases, as well as the substantia nigra, putamen, middle frontal gyrus, and entorhinal cortex of HD cases, and motor cortex, primary visual cortex, hippocampus, middle temporal gyrus, cingulate gyrus, and entorhinal cortex of ADD cases. Taken together, these observations indicate a common but regionally selective disruption of pantothenic acid levels across PDD, ADD, and HD

    Severe and Regionally Widespread Increases in Tissue Urea in the Human Brain Represent a Novel Finding of Pathogenic Potential in Parkinson’s Disease Dementia

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-05-18, accepted 2021-09-30, epub 2021-10-22Publication status: PublishedWidespread elevations in brain urea have, in recent years, been reported in certain types of age-related dementia, notably Alzheimer’s disease (AD) and Huntington’s disease (HD). Urea increases in these diseases are substantive, and approximate in magnitude to levels present in uraemic encephalopathy. In AD and HD, elevated urea levels are widespread, and not only in regions heavily affected by neurodegeneration. However, measurements of brain urea have not hitherto been reported in Parkinson’s disease dementia (PDD), a condition which shares neuropathological and symptomatic overlap with both AD and HD. Here we report measurements of tissue urea from nine neuropathologically confirmed regions of the brain in PDD and post-mortem delay (PMD)-matched controls, in regions including the cerebellum, motor cortex (MCX), sensory cortex, hippocampus (HP), substantia nigra (SN), middle temporal gyrus (MTG), medulla oblongata (MED), cingulate gyrus, and pons, by applying ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Urea concentrations were found to be substantively elevated in all nine regions, with average increases of 3–4-fold. Urea concentrations were remarkably consistent across regions in both cases and controls, with no clear distinction between regions heavily affected or less severely affected by neuronal loss in PDD. These urea elevations mirror those found in uraemic encephalopathy, where equivalent levels are generally considered to be pathogenic, and those previously reported in AD and HD. Increased urea is a widespread metabolic perturbation in brain metabolism common to PDD, AD, and HD, at levels equal to those seen in uremic encephalopathy. This presents a novel pathogenic mechanism in PDD, which is shared with two other neurodegenerative diseases

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Localised Pantothenic Acid (Vitamin B5) Reductions Present Throughout the Dementia with Lewy Bodies Brain

    No full text
    Localised pantothenic acid deficiencies have been observed in several neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD), and Huntington’s disease (HD), indicating downstream energetic pathway perturbations. However, no studies have yet been performed to see whether such deficiencies occur across the dementia with Lewy bodies (DLB) brain, or what the pattern of such dysregulation may be. In this study, pantothenic acid levels were determined in 20 individuals with DLB and 19 controls by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS) across ten brain regions. Case-control differences were determined by nonparametric Mann-Whitney U test, with the calculation of S-values, risk ratios, E-values, and effect sizes. The results were compared with those previously obtained in DLB, AD, and HD. Pantothenic acid levels were significantly decreased in six of the ten investigated brain regions: the pons, substantia nigra, motor cortex, middle temporal gyrus, primary visual cortex, and hippocampus. This level of pantothenic acid dysregulation is most similar to that of the AD brain, in which pantothenic acid is also decreased in the motor cortex, middle temporal gyrus, primary visual cortex, and hippocampus. DLB appears to differ from other neurodegenerative diseases in being the only of the four to not show pantothenic acid dysregulation in the cerebellum. Pantothenic acid deficiency appears to be a shared mechanism of several neurodegenerative diseases, although differences in the localisation of this dysregulation may contribute to the differing clinical pathways observed in these conditions

    Human dementia with Lewy bodies brain shows widespread urea elevations

    No full text
    IntroductionSeveral recent studies have uncovered the presence of widespread urea elevations in multiple neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), vascular dementia (VaD), and Huntington's disease (HD). However, it is currently unknown whether dementia with Lewy bodies also shows these alterations in urea. This study aimed to investigate if and where urea is perturbed in the DLB brain.MethodsTissues from ten brain regions were obtained from 20 diagnosed cases of DLB and 19 controls. Urea concentrations were measured using ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). Case–control differences were assessed by nonparametric Mann-Whitney U tests, and s-values, E-values, effect sizes, and risk ratios were determined for each brain region. The results were compared to those previously obtained for AD, PDD, VaD, and HD.ResultsAs with other previously investigated dementia diseases, DLB shows widespread urea elevations, affecting all ten regions investigated in the current study; the degree of these elevations is lower than that seen in AD or PDD, similar to that seen in HD, and higher than that observed in VaD. The highest urea fold-change was observed in the pons and the lowest in the primary visual cortex.ConclusionUrea elevations appear to be a shared alterations across at least five neurodegenerative diseases, despite their many differences in clinical and neuropathological presentation. The cause and effects of this perturbation should be the focus of future studies, for its possible contributions to the pathology of these conditions
    corecore