9 research outputs found
Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector
In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference
Wideband Digital Signal Processing Test-Bed for Radiometric RFI Mitigation
Radio Frequency Interference (RFI) is a persistent and growing problem experienced by spaceborne microwave radiometers. Recent missions such as SMOS, SMAP, and GPM has detected RFI in L, C, X, and K bands. To proactively deal with this issue, microwave radiometers must (1) Utilize new algorithms for RFI detection (2) Utilize fast digital back-ends that sample at hundreds of MHz. The wideband digital signal processing testbed (WB-RFI) is a platform that allows rapid deelopment and testing various RFI detection and mitigation algorithms
Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector
Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance
Wideband Digital Signal Processing Test-Bed for Radiometric RFI Mitigation
Radio Frequency Interference (RFI) is a persistent and growing problem experienced by spaceborne microwave radiometers. Recent missions such as SMOS, SMAP, and GPM have detected RFI in L, C, X, and K bands. To proactively deal with this issue, microwave radiometers must (1) Utilize new algorithms for RFI detection (2) Utilize fast digital back-ends that sample at hundreds of MHz. The wideband digital signal processing testbed (WB-RFI) is a platform that allows rapid development and testing various RFI detection and mitigation algorithms
An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis
Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI
Recommended from our members