14,625 research outputs found
The standard model and the constituents of leptons and quarks
A complete set of postulates of the standard model of the electroweak
interaction and mass generation is formulated and confirmed deriving the
Lagrangian for the standard model. A massive fermion is formed by a
right-handed and a left-handed elementary massless fermion, exchanging a scalar
doublet. The elementary massless fermions forming leptons belong to an
approximate SU(3) octet. The charges are quantised due to this symmetry
Processing peptidase of Neurospora mitochondria
Subunit 9 (dicyclohexylcarbodiimide binding protein, 'proteolipid') of the mitochondrial F1F0-ATPase is a nuclearly coded protein in Neurospora crassa. It is synthesized on free cytoplasmic ribosomes as a larger precursor with an NH2-terminal peptide extension. The peptide extension is cleaved off after transport of the protein into the mitochondria. A processing activity referred to as processing peptidase that cleaves the precursor to subunit 9 and other mitochondrial proteins is described and characterized using a cell-free system. Precursor synthesized in vitro was incubated with extracts of mitochondria. Processing peptidase required Mn2+ for its activity. Localization studies suggested that it is a soluble component of the mitochondrial matrix. The precursor was cleaved in two sequential steps via an intermediate-sized polypeptide. The intermediate form in the processing of subunit 9 was also seen in vivo and upon import of the precursor into isolated mitochondria in vitro. The two cleavage sites in the precursor molecule were determined. The data indicate that: (a) the correct NH2-terminus of the mature protein was generated, (b) the NH2-terminal amino acid of the intermediate-sized polypeptide is isoleucine in position-31. The cleavage sites show similarity of primary structure. It is concluded that processing peptidase removes the peptide extension from the precursor to subunit 9 (and probably other precursors) after translocation of these polypeptides (or the NH2-terminal part of these polypeptides) into the matrix space of mitochondria
Transport of the precursor to neurospora ATPase subunit 9 into yeast mitochondria
Isolated yeast mitochondria were able to take up Neurospora ATPase subunit 9 in vitro although the homologous yeast protein is synthesized within the mitochondria and inserted into the membrane from the matrix side (Tzagoloff, A., and Meagher, P. (1972) J. Biol. Chem. 247, 594- 603). The transfer of the protein was dependent on an energized mitochondrial inner membrane. It was accompanied by proteolytic processing of the precursor to the mature protein with the correct NH2 terminus as determined by Edman degradation of the transferred protein. The possibility is discussed that there are common features in the uptake machinery neither specific for one species nor specific for individual precursor proteins in the same species
The Patenting Behavior of Academic Founders
This study explores why academic entrepreneurs patent their inventions before and after creating a firm. Drawing on start-up data combined with patent data, we specifically examine the impact of five, relatively under-researched factors (scientific field, pace of technological development, technological uncertainty, entrepreneurial orientation, and patent effectiveness. The study shows that some scientific fields, technological uncertainty, and patent effectiveness are positively related to patent propensity, both before and after founding. The effects of pace of technological development and entrepreneurial orientation were timespecific. Our study suggests that patenting by academic entrepreneurs is driven by special rationales and that prior research on full-time scientists and established firms does not necessarily generalize to them. We discuss the implications of our findings both in terms of contribution to the current literature and technology transfer policies. --academic patenting
Importance of appropriate selection environments for breeding maize adapted to organic farming systems
Organic farming systems, characterized by special attention to soil fertility, recycling techniques and low external inputs, gained increased significance in recent years. As a consequence, there is a growing demand for varieties adapted to organic and/or low input farming. The objectives of the present study were to (i) compare the testcross performance of segregating maize (Zea mays) populations under established organic (OF) and conventional farming (CF) systems, (ii) determine quantitative genetic parameters decisive for the selection response under OF vs CF conditions, and (iii) draw conclusions for breeding new varieties optimally adapted to OF. Testcross performance of four different material groups of preselected lines (90 lines per group) derived from early European breeding material was assessed under OF and CF in three different geographic regions in Germany in 2008. Grain yields under OF were 3 to 18% lower than under CF in the individual experiments depending on the test region and, to a lesser extent, on the genetic material. On average, grain dry matter yield under OF was 1077 g m-2 compared to 1186 g m-2 under CF. Phenotypic correlations between OF and CF were small or moderate for grain yield in each of the four material groups (0.22 to 0.45), while strong and highly significant correlations were found for dry matter content (0.89 to 0.94). Genotypes with top grain yields under OF often did not show this superiority under CF and vice versa. Despite considerable heterogeneity of the OF test sites, the heritability for grain yield was in the same order of magnitude under OF and CF. It is concluded that test sites managed by OF are indispensable for making maximum progress in developing maize varieties for these conditions
Contingency Factors and the Technology-Performance-Relationship in Start-ups
This study identifies the pace of technological development and market heterogeneity as crucial environmental conditions shaping start-ups' performance when commercializing radical technologies. Using a unique dataset that combines survey and patent data for 85 technology-based start-ups, we found that technological radicalness has a positive effect on performance when the development pace in a start-up's technological field is high. Contrarily, under heterogeneous market conditions, technological radicalness diminishes a start-up's performance. The results emphasize that the impact of technological radicalness on start-ups' performance is context specific. Overall, these findings contribute to a better understanding of when technological radicalness represents an asset or a liability for technology-based startups
The Patenting Behavior of Academic Founders
This study explores why academic entrepreneurs patent their inventions before and after creating a firm. Drawing on start-up data combined with patent data, we specifically examine the impact of five, relatively under-researched factors (scientific field, pace of technological development, technological uncertainty, entrepreneurial orientation, and patent effectiveness. The study shows that some scientific fields, technological uncertainty, and patent effectiveness are positively related to patent propensity, both before and after founding. The effects of pace of technological development and entrepreneurial orientation were timespecific. Our study suggests that patenting by academic entrepreneurs is driven by special rationales and that prior research on full-time scientists and established firms does not necessarily generalize to them. We discuss the implications of our findings both in terms of contribution to the current literature and technology transfer policies
- …
