4,790 research outputs found

    Bound states due to an accelerated mirror

    Get PDF
    We discuss an effect of accelerated mirrors which remained hitherto unnoticed, the formation of a field condensate near its surface for massive fields. From the view point of an observer attached to the mirror, this is effect is rather natural because a gravitational field is felt there. The novelty here is that since the effect is not observer dependent even inertial observers will detect the formation of this condensate. We further show that this localization is in agreement with Bekenstein's entropy bound.Comment: Final version to appear in PR

    Boundary conditions and the entropy bound

    Full text link
    The entropy-to-energy bound is examined for a quantum scalar field confined to a cavity and satisfying Robin condition on the boundary of the cavity. It is found that near certain points in the space of the parameter defining the boundary condition the lowest eigenfrequency (while non-zero) becomes arbitrarily small. Estimating, according to Bekenstein and Schiffer, the ratio S/ES/E by the ζ\zeta-function, (24ζ(4))1/4(24\zeta (4))^{1/4}, we compute ζ(4)\zeta (4) explicitly and find that it is not bounded near those points that signals violation of the bound. We interpret our results as imposing certain constraints on the value of the boundary interaction and estimate the forbidden region in the parameter space of the boundary conditions.Comment: 16 pages, latex, v2: typos corrected, to appear in Phys.Rev.

    Time Dependent Effects and Transport Evidence for Phase Separation in La_{0.5}Ca_{0.5}MnO_{3}

    Full text link
    The ground state of La_{1-x}Ca_{x}MnO_{3} changes from a ferromagnetic metallic to an antiferromagnetic charge-ordered state as a function of Ca concentration at x ~ 0.50. We present evidence from transport measurements on a sample with x = 0.50 that the two phases can coexist, in agreement with other observations of phase separation in these materials. We also observe that, by applying and then removing a magnetic field to the mainly charge-ordered state at some temperatures, we can "magnetically anneal" the charge order, resulting in a higher zero-field resistivity. We also observe logarithmic time dependence in both resistivity and magnetization after a field sweep at low temperatures.Comment: 9 pages, LATEX, 3 postscript figure
    corecore