10,927 research outputs found

    Precision digital solar aspect sensor

    Get PDF
    The development of a digital solar aspect sensor with a resolution of approximately 14 arc-seconds is discussed. An interpolation technique was used to generate the fine angle measurements. The sensor and its mode of operation are described. The electronic and mechanical design of the sensor were completed, and two flight units, one for the OAO 4 and the other for determining the attitude of a spinning spacecraft, are being fabricated

    On the entropy of plasmas described with regularized Îş\kappa-distributions

    Full text link
    In classical thermodynamics the entropy is an extensive quantity, i.e.\ the sum of the entropies of two subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two subsystems. The extensitivity of entropy has been questioned in the context of a theoretical foundation for the so-called Îş\kappa-distributions, which describe plasma constituents with power-law velocity distributions. We demonstrate here, by employing the recently introduced {\it regularized Îş\kappa-distributions}, that entropy can be defined as an extensive quantity even for such power-law-like distributions that truncate exponentially.Comment: Preprint accepted for publication in Phys. Rev.

    Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems

    Full text link
    We present a time-dependent perturbative approach adapted to the treatment of intense pulsed interactions. We show there is a freedom in choosing secular terms and use it to optimize the accuracy of the approximation. We apply this formulation to a unitary superconvergent technique and improve the accuracy by several orders of magnitude with respect to the Magnus expansion.Comment: 4 pages, 2 figure

    Single electron transistors with high quality superconducting niobium islands

    Full text link
    Deep submicron Al-AlOx-Nb tunnel junctions and single electron transistors with niobium islands were fabricated by electron beam gun shadow evaporation. Using stencil masks consisting of the thermostable polymer polyethersulfone (PES) and germanium, high quality niobium patterns with good superconducting properties and a gap energy of up to 2Delta = 2.5 meV for the niobium were achieved. The I(U) characteristics of the transistors show special features due to tunneling of single Cooper pairs and significant gate modulation in both the superconducting and the normal state.Comment: 4 pages, 4 figure

    Picosecond pump–probe and polarization techniques in supersonic molecular beams: Measurement of ultrafast vibrational-rotational dephasing and coherence

    Get PDF
    In the last few years, the time-resolved dynamics of collisionless intramolecular vibrational-energy redistribution (IVR) [1] has been probed [2] using picosecond excitation and fluorescence detection. By this method new information on IVR, coherence and photochemical changes (e.g., trans-cis isomerization) has been obtained. [2,3] However, in a number of cases the (early time) primary step following picosecond excitation could not be resolved simply because the time resolution was limited to ~50ps

    Strong Coupling Theory of Two Level Atoms in Periodic Fields

    Get PDF
    We present a new convergent strong coupling expansion for two-level atoms in external periodic fields, free of secular terms. As a first application, we show that the coherent destruction of tunnelling is a third-order effect. We also present an exact treatment of the high-frequency region, and compare it with the theory of averaging. The qualitative frequency spectrum of the transition probability amplitude contains an effective Rabi frequency.Comment: 4 pages with 3 figure

    Role of multiorbital effects in the magnetic phase diagram of iron-pnictides

    Full text link
    We elucidate the pivotal role of the bandstructure's orbital content in deciding the type of commensurate magnetic order stabilized within the itinerant scenario of iron-pnictides. Recent experimental findings in the tetragonal magnetic phase attest to the existence of the so-called charge and spin ordered density wave over the spin-vortex crystal phase, the latter of which tends to be favored in simplified band models of itinerant magnetism. Here we show that employing a multiorbital itinerant Landau approach based on realistic bandstructures can account for the experimentally observed magnetic phase, and thus shed light on the importance of the orbital content in deciding the magnetic order. In addition, we remark that the presence of a hole pocket centered at the Brillouin zone's M{\rm M}-point favors a magnetic stripe rather than a tetragonal magnetic phase. For inferring the symmetry properties of the different magnetic phases, we formulate our theory in terms of magnetic order parameters transforming according to irreducible representations of the ensuing D4h_{\rm 4h} point group. The latter method not only provides transparent understanding of the symmetry breaking schemes but also reveals that the leading instabilities always belong to the {A1g,B1g}\{A_{1g},B_{1g}\} subset of irreducible representations, independent of their C2_2 or C4_4 nature.Comment: 11 pages, 6 figure
    • …
    corecore