76 research outputs found

    Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment.

    Get PDF
    Pancreatic cancer is one of the deadliest cancers worldwide, largely due to its aggressive development. Consequently, treatment options are often palliative, as only one-fifth of patients present with potentially curable tumors. The only available treatment with curative intent is surgery followed by adjuvant chemotherapy. However, even for patients that are eligible for surgery, the 5-year OS remains below 10%. Hence, there is an urgent need to find new therapeutic regimens. In the first part of this review, we discuss the tumor staging method and its impact on the corresponding current standard-of-care treatments for PDAC. We also consider the key clinical trials over the last 20 years that have improved patient survival. In the second part, we provide an overview of the major components and cell types involved in PDAC, as well as their respective roles and interactions with each other. A deeper knowledge of the interactions taking place in the TME may lead to the discovery of potential new therapeutic targets. Finally, we discuss promising treatment strategies targeting specific components of the TME and potential combinations thereof. Overall, this review provides an overview of the current challenges and future perspectives in the treatment of pancreatic cancer

    IL-32 as a potential biomarker and therapeutic target in skin inflammation.

    Get PDF
    IL-32 is a recently described cytokine that performs a variety of functions under inflammatory conditions. Serum IL-32 has been shown to be elevated in several diseases, including type 2 diabetes, cancer, systemic lupus erythematosus, HIV infection, and atopic diseases including atopic dermatitis. There are nine different isoforms of IL-32, with IL-32γ being the most biologically active one. The following review summarizes the different roles of the various IL-32 isoforms in the context of skin inflammation, with a focus on atopic dermatitis

    An Innovative Approach to Tissue Processing and Cell Sorting of Fixed Cells for Subsequent Single-Cell RNA Sequencing.

    Get PDF
    Although single-cell RNA sequencing (scRNA-seq) is currently the gold standard for the analysis of cell-specific expression profiles, the options for processing, staining, and preserving fresh cells remain very limited. Immediate and correct tissue processing is a critical determinant of scRNA-seq success. One major limitation is the restricted compatibility of fixation approaches, which must not destabilize or alter antibody labeling or RNA content or interfere with cell integrity. An additional limitation is the availability of expensive, high-demand cell-sorting equipment to exclude debris and dead or unwanted cells before proceeding with sample sequencing. The goal of this study was to develop a method that allows cells to be fixed and stored prior to FACS sorting for scRNA-seq without compromising the quality of the results. Finally, the challenge of preserving as many living cells as possible during tissue processing is another crucial issue addressed in this study. Our study focused on pancreatic ductal adenocarcinoma samples, where the number of live cells is rather limited, as in many other tumor tissues. Harsh tissue dissociation methods and sample preparation for analysis can negatively affect cell viability. Using the murine pancreatic cancer model Pan02, we evaluated the semi-automated mechanical/enzymatic digestion of solid tumors by gentleMACS Dissociator and compared it with mechanical dissociation of the same tissue. Moreover, we investigated a type of cell fixation that is successful in preserving cell RNA integrity yet compatible with FACS and subsequent scRNA-sequencing. Our protocol allows tissue to be dissociated and stained in one day and proceeds to cell sorting and scRNA-seq later, which is a great advantage for processing clinical patient material

    Cannabinoid Receptor Type-2 in B Cells Is Associated with Tumor Immunity in Melanoma.

    Get PDF
    Agents targeting the endocannabinoid system (ECS) have gained attention as potential cancer treatments. Given recent evidence that cannabinoid receptor 2 (CB2R) regulates lymphocyte development and inflammation, we performed studies on CB2R in the immune response against melanoma. Analysis of The Cancer Genome Atlas (TCGA) data revealed a strong positive correlation between CB2R expression and survival, as well as B cell infiltration in human melanoma. In a murine melanoma model, CB2R expression reduced the growth of melanoma as well as the B cell frequencies in the tumor microenvironment (TME), compared to CB2R-deficient mice. In depth analysis of tumor-infiltrating B cells using single-cell RNA sequencing suggested a less differentiated phenotype in tumors from Cb2r-/- mice. Thus, in this study, we demonstrate for the first time a protective, B cell-mediated role of CB2R in melanoma. This gained insight might assist in the development of novel, CB2R-targeted cancer therapies

    Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma.

    Get PDF
    Recent breakthroughs in tumor immunotherapy such as immune checkpoint blockade (ICB) antibodies, have demonstrated the capacity of the immune system to fight cancer in a number of malignancies such as melanoma and lung cancer. The numbers, localization and phenotypes of tumor-infiltrating lymphocytes (TIL) are not only predictive of response to immunotherapy but also key modulators of disease progression. In this review, we focus on TIL profiling in cutaneous melanoma using histopathological approaches and highlight the observed prognostic value of the primary TIL subsets. The quantification of TIL in formalin-fixed tumor samples ranges from visual scoring of lymphocytic infiltrates in H&E to multiplex immunohistochemistry and immunofluorescence followed by enumeration using image analysis software. Nevertheless, TIL enumeration in the current literature primarily relies upon single marker immunohistochemistry analyses of major lymphocyte subsets such as conventional T cells (CD3, CD4, CD8), regulatory T cells (FOXP3) and B cells (CD20). We review key studies in the literature on associations between TIL subsets and patient survival. We also cover recent findings with respect to the existence of ectopic lymphoid aggregates found in the TME which are termed tertiary lymphoid structures (TLS) and are generally a positive prognostic feature. In addition to their prognostic significance, the existence of various TIL sub-populations has also been reported to predict a patient's response to ICB. Thus, the literature on the predictive potential of TIL subsets in melanoma patients receiving ICB has also been discussed. Finally, we describe recently developed state-of-the-art profiling approaches for tumor infiltrating immune cells such as digital pathology scoring algorithms (e.g., Immunoscore) and multiplex proteomics-based immunophenotyping platforms (e.g., imaging mass cytometry). Translating these novel technologies have the potential to revolutionize tumor immunopathology leading to altering our current understanding of cancer immunology and dramatically improving outcomes for patients

    BCG hydrogel promotes CTSS-mediated antigen processing and presentation, thereby suppressing metastasis and prolonging survival in melanoma.

    Get PDF
    BACKGROUND The use of intralesional Mycobacterium bovis BCG (intralesional live BCG) for the treatment of metastatic melanoma resulted in regression of directly injected, and occasionally of distal lesions. However, intralesional-BCG is less effective in patients with visceral metastases and did not significantly improve overall survival. METHODS We generated a novel BCG lysate and developed it into a thermosensitive PLGA-PEG-PLGA hydrogel (BCG hydrogel), which was injected adjacent to the tumor to assess its antitumor effect in syngeneic tumor models (B16F10, MC38). The effect of BCG hydrogel treatment on contralateral tumors, lung metastases, and survival was assessed to evaluate systemic long-term efficacy. Gene expression profiles of tumor-infiltrating immune cells and of tumor-draining lymph nodes from BCG hydrogel-treated mice were analyzed by single-cell RNA sequencing (scRNA-seq) and CD8+ T cell receptor (TCR) repertoire diversity was assessed by TCR-sequencing. To confirm the mechanistic findings, RNA-seq data of biopsies obtained from in-transit cutaneous metastases of patients with melanoma who had received intralesional-BCG therapy were analyzed. RESULTS Here, we show that BCG lysate exhibits enhanced antitumor efficacy compared to live mycobacteria and promotes a proinflammatory tumor microenvironment and M1 macrophage (MΦ) polarization in vivo. The underlying mechanisms of BCG lysate-mediated tumor immunity are dependent on MΦ and dendritic cells (DCs). BCG hydrogel treatment induced systemic immunity in melanoma-bearing mice with suppression of lung metastases and improved survival. Furthermore, BCG hydrogel promoted cathepsin S (CTSS) activity in MΦ and DCs, resulting in enhanced antigen processing and presentation of tumor-associated antigens. Finally, BCG hydrogel treatment was associated with increased frequencies of melanoma-reactive CD8+ T cells. In human patients with melanoma, intralesional-BCG treatment was associated with enhanced M1 MΦ, mature DC, antigen processing and presentation, as well as with increased CTSS expression which positively correlated with patient survival. CONCLUSIONS These findings provide mechanistic insights as well as rationale for the clinical translation of BCG hydrogel as cancer immunotherapy to overcome the current limitations of immunotherapies for the treatment of patients with melanoma

    Antithrombin deficiency is associated with mortality and impaired organ function in septic pediatric patients: a retrospective study

    Get PDF
    Background Sepsis remains a major problem in intensive care medicine. It is often accompanied by coagulopathies, leading to thrombotic occlusion of small vessels with subsequent organ damage and even fatal multi-organ failure. Prediction of the clinical course and outcome—especially in the heterogeneous group of pediatric patients—is difficult. Antithrombin, as an endogenous anticoagulant enzyme with anti-inflammatory properties, plays a central role in controling coagulation and infections. We investigated the relationship between antithrombin levels and organ failure as well as mortality in pediatric patients with sepsis. Methods Data from 164 patients under the age of 18, diagnosed with sepsis, were retrospectively reviewed. Antithrombin levels were recorded three days before to three days after peak C-reactive protein to correlate antithrombin levels with inflammatory activity. Using the concept of developmental haemostasis, patients were divided into groups <1 yr and ≥1 yr of age. Results In both age groups, survivors had significantly higher levels of antithrombin than did deceased patients. An optimal threshold level for antithrombin was calculated by ROC analysis for survival: 41.5% (<1 yr) and 67.5% (≥1 yr). The mortality rate above this level was 3.3% (<1 yr) and 9.5% (≥1 yr), and below this level 41.7% (<1 yr) and 32.2% (≥1 yr); OR 18.8 (1.74 to 1005.02), p = 0.0047, and OR 4.46 (1.54 to 14.89), p = 0.003. In children <1 yr with antithrombin levels <41.5% the rate of respiratory failure (66.7%) was significantly higher than in patients with antithrombin levels above this threshold level (23.3%), OR 6.23 (1.23 to 37.81), p = 0.0132. In children ≥1 yr, both liver failure (20.3% vs 1.6%, OR 15.55 (2.16 to 685.01), p = 0.0008) and a dysfunctional intestinal tract (16.9% vs 4.8%, OR 4.04 (0.97 to 24.08), p = 0.0395) occurred more frequently above the antithrombin threshold level of 67.5%. Conclusion In pediatric septic patients, significantly increased mortality and levels of organ failure were found below an age-dependent antithrombin threshold level. Antithrombin could be useful as a prognostic marker for survival and occurrence of organ failure in pediatric sepsis

    Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae.

    Get PDF
    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP

    Regulator of G-protein signaling 1 critically supports CD8+ TRM cell-mediated intestinal immunity.

    Get PDF
    Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens
    corecore