420 research outputs found

    Neonatal immune responses to TLR2 stimulation: Influence of maternal atopy on Foxp3 and IL-10 expression

    Get PDF
    BACKGROUND: Maternal atopic background and stimulation of the adaptive immune system with allergen interact in the development of allergic disease. Stimulation of the innate immune system through microbial exposure, such as activation of the innate Toll-like-receptor 2 (TLR2), may reduce the development of allergy in childhood. However, little is known about the immunological effects of microbial stimulation on early immune responses and in association with maternal atopy. METHODS: We analyzed immune responses of cord blood mononuclear cells (CBMC) from 50 healthy neonates (31 non-atopic and 19 atopic mothers). Cells were stimulated with the TLR2 agonist peptidoglycan (Ppg) or the allergen house dust mite Dermatophagoides farinae (Derf1), and results compared to unstimulated cells. We analyzed lymphocyte proliferation and cytokine secretion of CBMC. In addition, we assessed gene expression associated with T regulatory cells including the transcription factor Foxp3, the glucocorticoid-induced TNF receptor (GITR), and the cytotoxic lymphocyte antigen 4 (CTLA4). Lymphocyte proliferation was measured by (3)H-Thymidine uptake, cytokine concentrations determined by ELISA, mRNA expression of T cell markers by real-time RT-PCR. RESULTS: Ppg stimulation induced primarily IL-10 cytokine production, in addition to IFN-γ, IL-13 and TNF-α secretion. GITR was increased following Ppg stimulation (p = 0.07). Ppg-induced IL-10 production and induction of Foxp3 were higher in CBMC without, than with maternal atopy (p = 0.04, p = 0.049). IL-10 production was highly correlated with increased expression of Foxp3 (r = 0.53, p = 0.001), GITR (r = 0.47, p = 0.004) and CTLA4 (r = 0.49, p = 0.003), independent of maternal atopy. CONCLUSION: TLR2 stimulation with Ppg induces IL-10 and genes associated with T regulatory cells, influenced by maternal atopy. Increased IL-10 and Foxp3 induction in CBMC of non-atopic compared to atopic mothers, may indicate an increased capacity to respond to microbial stimuli

    Bird collisions in a railway crossing a wetland of international importance (Sado estuary, Portugal)

    Get PDF
    L. Borda-de-Água et al. (eds.), Railway Ecology, chapter 7, p. 103-115Many studies have evaluated bird mortality in relation to roads and other human structures, but little is known about the potential impacts of railways. In particular, it is uncertain whether railways are an important mortality source when crossing wetlands heavily used by aquatic birds. Here we analyze bird collisions in a railway that crosses the Nature Reserve of the Sado Estuary (Portugal) over an annual cycle, documenting bird mortality and the flight behaviour of aquatic birds in relation to a bowstring bridge. During monthly surveys conducted on 16.3 km of railway, we found 5.8 dead birds/km/10 survey days in the section crossing wetland habitats (6.3 km), while <0.5 dead birds/km/10 survey days were found in two sections crossing only forested habitats. Most birds recorded were small songbirds (Passeriformes), while there was only a small number of aquatic birds (common moorhen, mallard, flamingo, great cormorant, gulls) and other non-passerines associated with wetlands (white stork). During nearly 400 h of observations, we recorded 27,000 movements of aquatic birds across the Sado bridge, particularly in autumn and winter. However, only <1% of movements were within the area of collision risk with trains, while about 91% were above the collision risk area, and 8% were below the bridge. Overall, our case study suggests that bird collisions may be far more numerous in railways crossing wetland habitats than elsewhere, although the risk to aquatic birds may be relatively low. Information from additional study systems would be required to evaluate whether our conclusions apply to other wetlands and railway linesinfo:eu-repo/semantics/publishedVersio

    Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation

    Get PDF
    Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status

    Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity

    Get PDF
    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated

    Human-centred automation to simplify the path to social and economic sustainability

    Get PDF
    Musculoskeletal Disorders (MSDs) pose a serious threat to sustainability in manufacturing. In particular, this phenomenon impacts the sustainability indicators of worker health and safety and the Gross Domestic Product (GDP). Effective MSD prevention measures would therefore constitute a remarkable contribution to social and economic sustainability. This chapter provides first an outline of existing methods to prevent MSD at the workplace. Analysis of the approaches yields that effective solutions require earmarked finances as well as qualified personnel, both of which are not affordable for many companies. In pursuit of solutions, Human-centred Automation (HCA), a recent paradigm in manufacturing, proposes the design of manufacturing systems using intelligent technology to support the worker instead of replacing him/her. HCA has the unique potential of reducing the effort needed to implement MSD prevention strategies by simplifying the path to social and economic sustainability. This chapter demonstrates this process with the example of the “Working Posture Controller” (WPC), which illustrates how the HCA concept can be applied. Finally, the lessons learned from the case are outlined, providing a vision of how future workplaces can benefit from HCA

    Natural infection by the protozoan Leptomonas wallacei impacts the morphology, physiology, reproduction, and lifespan of the insect Oncopeltus fasciatus

    Get PDF
    Trypanosomatids are protozoan parasites that infect thousands of globally dispersed hosts, potentially affecting their physiology. Several species of trypanosomatids are commonly found in phytophagous insects. Leptomonas wallacei is a gut-restricted insect trypanosomatid only retrieved from Oncopeltus fasciatus. The insects get infected by coprophagy and transovum transmission of L. wallacei cysts. The main goal of the present study was to investigate the effects of a natural infection by L. wallacei on the hemipteran insect O. fasciatus, by comparing infected and uninfected individuals in a controlled environment. The L. wallacei-infected individuals showed reduced lifespan and morphological alterations. Also, we demonstrated a higher infection burden in females than in males. The infection caused by L. wallacei reduced host reproductive fitness by negatively impacting egg load, oviposition, and eclosion, and promoting an increase in egg reabsorption. Moreover, we associated the egg reabsorption observed in infected females, with a decrease in the intersex gene expression. Finally, we suggest alterations in population dynamics induced by L. wallacei infection using a mathematical model. Collectively, our findings demonstrated that L. wallacei infection negatively affected the physiology of O. fasciatus, which suggests that L. wallacei potentially has a vast ecological impact on host population growth

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Shakespearean allusion and the detective fiction of Georgette Heyer

    Get PDF
    This essay argues that Shakespearean allusion is a recurrent and important factor in the detective novels of Georgette Heyer. Though the master text for Heyer is Hamlet, a variety of Shakespeare plays are referred to, and mention of them functions in multiple ways. Quotations from Shakespeare reveal truths about the characters and comment on their situations and personalities. They also afford points of entry for people previously unacquainted to talk to each other, and finally they have effects in terms of genre, since their presence can, with equal facility, tend towards comic relief (in line with a tradition in Golden Age crime fiction of using Macbeth in particular to comic effect) or work to add gravitas and resonance. The use of Shakespearean allusion is thus central to Heyer’s technique. This article is published as part of a collection to commemorate the 400th anniversary of William Shakespeare’s death

    Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway

    Get PDF
    BACKGROUND: Since the creation of “Golden Rice”, biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids. METHODOLOGY: We transformed potato with a mini-pathway of bacterial origin, driving the synthesis of beta-carotene (Provitamin A) from geranylgeranyl diphosphate. Three genes, encoding phytoene synthase (CrtB), phytoene desaturase (CrtI) and lycopene beta-cyclase (CrtY) from Erwinia, under tuber-specific or constitutive promoter control, were used. 86 independent transgenic lines, containing six different promoter/gene combinations, were produced and analyzed. Extensive regulatory effects on the expression of endogenous genes for carotenoid biosynthesis are observed in transgenic lines. Constitutive expression of the CrtY and/or CrtI genes interferes with the establishment of transgenosis and with the accumulation of leaf carotenoids. Expression of all three genes, under tuber-specific promoter control, results in tubers with a deep yellow (“golden”) phenotype without any adverse leaf phenotypes. In these tubers, carotenoids increase approx. 20-fold, to 114 mcg/g dry weight and beta-carotene 3600-fold, to 47 mcg/g dry weight. CONCLUSIONS: This is the highest carotenoid and beta-carotene content reported for biofortified potato as well as for any of the four major staple foods (the next best event being “Golden Rice 2”, with 31 mcg/g dry weight beta-carotene). Assuming a beta-carotene to retinol conversion of 6∶1, this is sufficient to provide 50% of the Recommended Daily Allowance of Vitamin A with 250 gms (fresh weight) of “golden” potatoes

    What a Plant Sounds Like: The Statistics of Vegetation Echoes as Received by Echolocating Bats

    Get PDF
    A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes
    corecore