26 research outputs found
A new census of protein tandem repeats and their relationship with intrinsic disorder
Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small. TRs were enriched with disorder-promoting amino acids and were inside intrinsically disordered regions. Many such TRs were homorepeats. Our results support that TRs mostly originate by duplication and are involved in essential functions such as transcription processes, structural organization, electron transport and iron-binding. In viruses, TRs are found in proteins essential for virulence
Deep conservation of human protein tandem repeats within the eukaryotes
Tandem repeats (TRs) are a major element of protein sequences in all domains of life. They are particularly abundant in mammals, where by conservative estimates one in three proteins contain a TR. High generation-scale duplication and deletion rates were reported for nucleic TR units. However, it is not known whether protein TR units can also be frequently lost or gained providing a source of variation for rapid adaptation of protein function, or alternatively, tend to have conserved TR unit configurations over long evolutionary times. To obtain a systematic picture for proteins TRs, we performed a proteome-wide analysis of the mode of evolution for human TRs. For this purpose, we propose a novel method for the detection of orthologous TRs based on circular profile hidden Markov models. For all detected TRs we reconstructed bi-species TR unit phylogenies across 61 eukaryotes ranging from human to yeast. Moreover, we performed additional analyses to correlate functional and structural annotations of human TRs with their mode of evolution. Surprisingly, we find that the vast majority of human TRs are ancient, with TR unit number and order preserved intact since distant speciation events. For example, ≥61% of all human TRs have been strongly conserved at least since the root of all mammals, approximately 300 Mya ago. Further, we find no human protein TR that shows evidence for strong recent duplications and deletions. The results are in contrast to high generation-scale mutability of nucleic TRs. Presumably, most protein TRs fold into stable and conserved structures that are indispensable for the function of the TR-containing protein. All of our data and results are available for download from http://www.atgc-montpellier.fr/TRE
Deep conservation of human protein tandem repeats within the eukaryotes
Tandem repeats (TRs) are a major element of protein sequences in all domains of life. They are particularly abundant in mammals, where by conservative estimates one in three proteins contain a TR. High generation-scale duplication and deletion rates were reported for nucleic TR units. However, it is not known whether protein TR units can also be frequently lost or gained providing a source of variation for rapid adaptation of protein function, or alternatively, tend to have conserved TR unit configurations over long evolutionary times. To obtain a systematic picture for proteins TRs, we performed a proteome-wide analysis of the mode of evolution for human TRs. For this purpose, we propose a novel method for the detection of orthologous TRs based on circular profile hidden Markov models. For all detected TRs we reconstructed bi-species TR unit phylogenies across 61 eukaryotes ranging from human to yeast. Moreover, we performed additional analyses to correlate functional and structural annotations of human TRs with their mode of evolution. Surprisingly, we find that the vast majority of human TRs are ancient, with TR unit number and order preserved intact since distant speciation events. For example, ≥61% of all human TRs have been strongly conserved at least since the root of all mammals, approximately 300 Mya ago. Further, we find no human protein TR that shows evidence for strong recent duplications and deletions. The results are in contrast to high generation-scale mutability of nucleic TRs. Presumably, most protein TRs fold into stable and conserved structures that are indispensable for the function of the TR-containing protein. All of our data and results are available for download from http://www.atgc-montpellier.fr/TRE
Repeat or not repeat?—Statistical validation of tandem repeat prediction in genomic sequences
Tandem repeats (TRs) represent one of the most prevalent features of genomic sequences. Due to their abundance and functional significance, a plethora of detection tools has been devised over the last two decades. Despite the longstanding interest, TR detection is still not resolved. Our large-scale tests reveal that current detectors produce different, often nonoverlapping inferences, reflecting characteristics of the underlying algorithms rather than the true distribution of TRs in genomic data. Our simulations show that the power of detecting TRs depends on the degree of their divergence, and repeat characteristics such as the length of the minimal repeat unit and their number in tandem. To reconcile the diverse predictions of current algorithms, we propose and evaluate several statistical criteria for measuring the quality of predicted repeat units. In particular, we propose a model-based phylogenetic classifier, entailing a maximum-likelihood estimation of the repeat divergence. Applied in conjunction with the state of the art detectors, our statistical classification scheme for inferred repeats allows to filter out false-positive predictions. Since different algorithms appear to specialize at predicting TRs with certain properties, we advise applying multiple detectors with subsequent filtering to obtain the most complete set of genuine repeat
TRAL : tandem repeat annotation library
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Motivation: Currently, more than 40 sequence tandem repeat detectors are published, providing heterogeneous, partly complementary, partly conflicting results.
Results: We present TRAL, a tandem repeat annotation library that allows running and parsing of various detection outputs, clustering of redundant or overlapping annotations, several statistical frameworks for filtering false positive annotations, and importantly a tandem repeat annotation and refinement module based on circular profile hidden Markov models (cpHMMs). Using TRAL, we evaluated the performance of a multi-step tandem repeat annotation workflow on 547 085 sequences in UniProtKB/Swiss-Prot. The researcher can use these results to predict run-times for specific datasets, and to choose annotation complexity accordingly
TRAL: tandem repeat annotation library
Motivation: Currently, more than 40 sequence tandem repeat detectors are published, providing heterogeneous, partly complementary, partly conflicting results. Results: We present TRAL, a tandem repeat annotation library that allows running and parsing of various detection outputs, clustering of redundant or overlapping annotations, several statistical frameworks for filtering false positive annotations, and importantly a tandem repeat annotation and refinement module based on circular profile hidden Markov models (cpHMMs). Using TRAL, we evaluated the performance of a multi-step tandem repeat annotation workflow on 547 085 sequences in UniProtKB/Swiss-Prot. The researcher can use these results to predict run-times for specific datasets, and to choose annotation complexity accordingly. Availability and implementation: TRAL is an open-source Python 3 library and is available, together with documentation and tutorials via http://www.vital-it.ch/software/tral. Contact: [email protected]
An Arrayed Genome-Wide Perturbation Screen Identifies the Ribonucleoprotein hnRNP K As Rate-Limiting for Prion Propagation
A defining characteristic of mammalian prions is their capacity for self-sustained propagation. Theoretical considerations and experimental evidence suggest that prion propagation is modulated by cell-autonomous and non-autonomous modifiers. Using a novel quantitative phospholipase protection assay (QUIPPER) for high-throughput prion measurements, we performed an arrayed genome-wide RNA interference (RNAi) screen aimed at detecting modifiers of prion propagation. We exposed prion-infected cells in high-density microplates to 35’364 ternary pools of 52’746 siRNAs targeting 17’582 genes representing the mouse protein-coding transcriptome. We identified 1191 modulators of prion propagation. While 1151 of these modified the expression of both the pathological prion protein, PrP, and its cellular counterpart PrP, 40 genes affected selectively PrP. Of the latter, 20 genes augmented prion production when suppressed. A prominent limiter of prion propagation was the heterogeneous nuclear ribonucleoprotein Hnrnpk. Psammaplysene A (PSA), which binds Hnrnpk, reduced prion levels in cultured cells and protected them from cytotoxicity. PSA also reduced prion levels in infected cerebellar organotypic slices and alleviated locomotor deficits in prion-infected Drosophila melanogaster expressing ovine PrP. Hence, genome-wide QUIPPER-based perturbations can discover actionable cellular pathways involved in prion propagation. Finally, the unexpected identification of a prioncontrolling ribonucleoprotein suggests a role for RNA in the generation of infectious prions
The evolution and function of protein tandem repeats in plants
Sequence tandem repeats (TRs) are abundant in proteomes across all domains of life. For plants, little is known about their distribution or contribution to protein function. We exhaustively annotated TRs and studied the evolution of TR unit variations for all Ensembl plants.
Using phylogenetic patterns of TR units, we detected conserved TRs with unit number and order preserved during evolution, and those TRs that have diverged via recent TR unit gains/losses. We correlated the mode of evolution of TRs to protein function.
TR number was strongly correlated with proteome size, with about one-half of all TRs recognized as common protein domains. The majority of TRs have been highly conserved over long evolutionary distances, some since the separation of red algae and green plants c. 1.6 billion yr ago. Conversely, recurrent recent TR unit mutations were rare.
Our results suggest that the first TRs by far predate the first plants, and that TR appearance is an ongoing process with similar rates across the plant kingdom. Interestingly, the few detected highly mutable TRs might provide a source of variation for rapid adaptation. In particular, such TRs are enriched in leucine-rich repeats (LRRs) commonly found in R genes, where TR unit gain/loss may facilitate resistance to emerging pathogens