2,595 research outputs found

    Open-charm enhancement at FAIR?

    Get PDF
    We have calculated the D-meson spectral density at finite temperature within a self-consistent coupled-channel approach that generates dynamically the Λc\Lambda_c (2593) resonance. We find a small mass shift for the D-meson in this hot and dense medium while the spectral density develops a sizeable width. The reduced attraction felt by the D-meson in hot and dense matter together with the large width observed have important consequences for the D-meson production in the future CBM experiment at FAIR.Comment: 4 pages, 2 figures, to appear in the proceedings of 9th International Conference on Strangeness in Quark Matter (SQM2006), Los Angeles, USA, March 26-31, 200

    Magnetothermodynamics: Measuring equations of state in a relaxed magnetohydrodynamic plasma

    Get PDF
    We report the first measurements of equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.Comment: 4 pages, 4 figure

    Modification of turbulent transport with continuous variation of flow shear in the Large Plasma Device

    Get PDF
    Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) has been achieved using a biasable limiter which has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in LAPD. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (<10<10kHz) density fluctuations. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. The variations of density fluctuations are fit well with power-laws and compare favorably to simple models of shear suppression of transport.Comment: 10 pages, 5 figures; Submitted to Phys. Rev. Let

    KK^- - nucleus relativistic mean field potentials consistent with kaonic atoms

    Full text link
    KK^- atomic data are used to test several models of the KK^- nucleus interaction. The t(ρ\rho)ρ\rho optical potential, due to coupled channel models incorporating the Λ\Lambda(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the Λ\Lambda(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit KK^- optical potential is found to be strongly attractive, with a depth of 180 \pm 20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.Comment: revised, Phys. Rev. C in pres

    Kaon effective mass and energy from a novel chiral SU(3)-symmetric Lagrangian

    Get PDF
    A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Br\"{u}ckner theory. Our numerical results show that the kaon effective mass might be changed only moderately in the nuclear medium due to the highly non-linear density effects. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the effective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry.Comment: 13 pages, Latex, 3 PostScript figures included; replaced by the revised version, to appear in Phys. Rev.

    Strangeness in Astrophysics and Cosmology

    Full text link
    Some recent developments concerning the role of strange quark matter for astrophysical systems and the QCD phase transition in the early universe are addressed. Causality constraints of the soft nuclear equation of state as extracted from subthreshold kaon production in heavy-ion collisions are used to derive an upper mass limit for compact stars. The interplay between the viscosity of strange quark matter and the gravitational wave emission from rotation-powered pulsars are outlined. The flux of strange quark matter nuggets in cosmic rays is put in perspective with a detailed numerical investigation of the merger of two strange stars. Finally, we discuss a novel scenario for the QCD phase transition in the early universe, which allows for a small inflationary period due to a pronounced first order phase transition at large baryochemical potential.Comment: 8 pages, invited talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, September 28 - October 2, 200

    Strange quark matter in explosive astrophysical systems

    Full text link
    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bounce evolution of core-collapse supernovae and introduce the effects from strong interactions to increase the maximum mass of hybrid stars. In the MIT bag model, together with the strange quark mass and the bag constant, the strong coupling constant αs\alpha_s provides a parameter to set the beginning and extension of the quark phase and with this the mass and radius of hybrid stars.Comment: 6 pages, 5 figures, talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, September 28 - October 2, 2009, to be published in Journal Phys.

    Dibaryons with Strangeness: their Weak Nonleptonic Decay using SU(3) Symmetry and how to find them in Relativistic Heavy-Ion Collisions

    Get PDF
    Weak SU(3) symmetry is successfully applied to the weak hadronic decay amplitudes of octet hyperons. Weak nonmesonic and mesonic decays of various dibaryons with strangeness, their dominant decay modes, and lifetimes are calculated. Production estimates for BNL's Relativistic Heavy-Ion Collider are presented employing wave function coalescence. Signals for detecting strange dibaryon states in heavy-ion collisions and revealing information about the unknown hyperon-hyperon interactions are outlined.Comment: 4 pages, 2 figures, uses RevTeX, discussion about the model of the weak decay and experimental signals extended, references update
    corecore