6 research outputs found

    Acute effects of cannabinoids on addiction endophenotypes are moderated by genes encoding the CB1 receptor and FAAH enzyme

    Get PDF
    Understanding genetic factors that contribute to cannabis use disorder (CUD) is important, but to date, findings have been equivocal. Single‐nucleotide polymorphisms (SNPs) in the cannabinoid receptor 1 gene (CNR1; rs1049353 and rs806378) and fatty acid amide hydrolase (FAAH) gene (rs324420) have been implicated in CUD. Their relationship to addiction endophenotypes such as cannabis‐related state satiety, the salience of appetitive cues, and craving after acute cannabinoid administration has not been investigated. Forty‐eight cannabis users participated in a double‐blind, placebo‐controlled, four‐way crossover experiment where they were administered treatments in a randomized order via vaporization: placebo, Δ9‐tetrahydrocannabinol (THC) (8 mg), THC + cannabidiol (THC + CBD) (8 + 16 mg), and CBD (16 mg). Cannabis‐related state satiety, appetitive cue salience (cannabis and food), and cannabis craving were assessed each day. Participants were genotyped for rs1049353, rs806378, and rs324420. Results indicated that CNR1 rs1049353 GG carriers showed increased state satiety after THC/THC + CBD administration in comparison with placebo and reduced the salience of appetitive cues after THC in comparison with CBD administration; A carriers did not vary on either of these measures indicative of a vulnerability to CUD. CNR1 rs806378 CC carriers showed greater salience to appetitive cues in comparison with T carriers, but there was no evidence for changes in state satiety. FAAH rs324420 A carriers showed greater bias to appetitive cues after THC, in comparison with CC carriers. FAAH CC carriers showed reduced bias after THC in comparison with CBD. No SNPs modulated craving. These findings identify candidate neurocognitive mechanisms through which endocannabinoid system genetics may influence vulnerability to CUD

    Determination of herbicides in human urine by liquid chromatography-mass spectrometry with electrospray ionization.

    Get PDF
    Aims: To determine the degree to which cigarette smoking predicts levels of cannabis dependence above and beyond cannabis use itself, concurrently and in an exploratory four-year follow-up, and to investigate whether cigarette smoking mediates the relationship between cannabis use and cannabis dependence. Methods: The study was cross sectional with an exploratory follow-up in the participants’ own homes or via telephone interviews in the United Kingdom. Participants were 298 cannabis and tobacco users aged between 16 and 23; follow-up consisted of 65 cannabis and tobacco users. The primary outcome variable was cannabis dependence as measured by the Severity of Dependence Scale (SDS). Cannabis and tobacco smoking were assessed through a self-reported drug history. Results: Regression analyses at baseline showed cigarette smoking (frequency of cigarette smoking: B = 0.029, 95% CI = 0.01, 0.05; years of cigarette smoking: B = 0.159, 95% CI = 0.05, 0.27) accounted for 29% of the variance in cannabis dependence when controlling for frequency of cannabis use. At follow-up, only baseline cannabis dependence predicted follow-up cannabis dependence (B = 0.274, 95% CI = 0.05, 0.53). At baseline, cigarette smoking mediated the relationship between frequency of cannabis use and dependence (B = 0.0168, 95% CI = 0.008, 0.288) even when controlling for possible confounding variables (B = 0.0153, 95% CI = 0.007, 0.027). Conclusions: Cigarette smoking is related to concurrent cannabis dependence independently of cannabis use frequency. Cigarette smoking also mediates the relationship between cannabis use and cannabis dependence suggesting tobacco is a partial driver of cannabis dependence in young people who use cannabis and tobacco

    Acute effects of cannabinoids on addiction endophenotypes are moderated by genes encoding the CB1 receptor and FAAH enzyme

    Get PDF
    Understanding genetic factors that contribute to cannabis use disorder (CUD) is important, but to date, findings have been equivocal. Single-nucleotide polymorphisms (SNPs) in the cannabinoid receptor 1 gene (CNR1; rs1049353 and rs806378) and fatty acid amide hydrolase (FAAH) gene (rs324420) have been implicated in CUD. Their relationship to addiction endophenotypes such as cannabis-related state satiety, the salience of appetitive cues, and craving after acute cannabinoid administration has not been investigated. Forty-eight cannabis users participated in a double-blind, placebo-controlled, four-way crossover experiment where they were administered treatments in a randomized order via vaporization: placebo, Δ 9 -tetrahydrocannabinol (THC) (8 mg), THC + cannabidiol (THC + CBD) (8 + 16 mg), and CBD (16 mg). Cannabis-related state satiety, appetitive cue salience (cannabis and food), and cannabis craving were assessed each day. Participants were genotyped for rs1049353, rs806378, and rs324420. Results indicated that CNR1 rs1049353 GG carriers showed increased state satiety after THC/THC + CBD administration in comparison with placebo and reduced the salience of appetitive cues after THC in comparison with CBD administration; A carriers did not vary on either of these measures indicative of a vulnerability to CUD. CNR1 rs806378 CC carriers showed greater salience to appetitive cues in comparison with T carriers, but there was no evidence for changes in state satiety. FAAH rs324420 A carriers showed greater bias to appetitive cues after THC, in comparison with CC carriers. FAAH CC carriers showed reduced bias after THC in comparison with CBD. No SNPs modulated craving. These findings identify candidate neurocognitive mechanisms through which endocannabinoid system genetics may influence vulnerability to CUD. </p

    Acute effects of delta-9-tetrahydrocannabinol, cannabidiol and their combination on facial emotion recognition:a randomised, double-blind, placebo-controlled study in cannabis users

    Get PDF
    Acute administration of the primary psychoactive constituent of cannabis, Δ-9-tetrahydrocannabinol (THC), impairs human facial affect recognition, implicating the endocannabinoid system in emotional processing. Another main constituent of cannabis, cannabidiol (CBD), has seemingly opposite functional effects on the brain. This study aimed to determine the effects of THC and CBD, both alone and in combination on emotional facial affect recognition. 48 volunteers, selected for high and low frequency of cannabis use and schizotypy, were administered, THC (8mg), CBD (16mg), THC+CBD (8mg+16mg) and placebo, by inhalation, in a 4-way, double-blind, placebo-controlled crossover design. They completed an emotional facial affect recognition task including fearful, angry, happy, sad, surprise and disgust faces varying in intensity from 20% to 100%. A visual analogue scale (VAS) of feeling 'stoned' was also completed. In comparison to placebo, CBD improved emotional facial affect recognition at 60% emotional intensity; THC was detrimental to the recognition of ambiguous faces of 40% intensity. The combination of THC+CBD produced no impairment. Relative to placebo, both THC alone and combined THC+CBD equally increased feelings of being 'stoned'. CBD did not influence feelings of 'stoned'. No effects of frequency of use or schizotypy were found. In conclusion, CBD improves recognition of emotional facial affect and attenuates the impairment induced by THC. This is the first human study examining the effects of different cannabinoids on emotional processing. It provides preliminary evidence that different pharmacological agents acting upon the endocannabinoid system can both improve and impair recognition of emotional faces.</p
    corecore