7 research outputs found

    Relations of Water-quality Constituent Concentrations to Surrogate Measurements in the Lower Platte River Corridor, Nebraska, 2007 through 2011

    Get PDF
    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The United States Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebraska [USGS site 06800500]; Salt Creek near Ashland, Nebraska [USGS site 06805000]; and Platte River at Louisville, Nebraska [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions.Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models.Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus, orthophosphate, chloride, atrazine, acetochlor, suspended sediment, and E. coli. Models developed for Salt Creek included nitrate plus nitrite, total Kjeldahl nitrogen, suspended sediment, and E. coli. Lastly, models developed for the Platte River site included total Kjeldahl nitrogen, total phosphorus, sodium, metolachlor, atrazine, acetochlor, suspended sediment, and E. coli

    Geomorphic Segmentation, Hydraulic Geometry, and Hydraulic Microhabitats of the Niobrara River, Nebraska—Methods and Initial Results

    Get PDF
    The Niobrara River of Nebraska is a geologically, ecologically, and economically significant resource. The State of Nebraska has recognized the need to better manage the surface- and ground-water resources of the Niobrara River so they are sustainable in the long term. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey is investigating the hydrogeomorphic settings and hydraulic geometry of the Niobrara River to assist in characterizing the types of broad-scale physical habitat attributes that may be of importance to the ecological resources of the river system. This report includes an inventory of surface-water and ground-water hydrology data, surface water-quality data, a longitudinal geomorphic segmentation and characterization of the main channel and its valley, and hydraulic geometry relations for the 330-mile section of the Niobrara River from Dun¬lap Diversion Dam in western Nebraska to the Missouri River confluence. Hydraulic microhabitats also were analyzed using available data from discharge measurements to demonstrate the potential application of these data and analysis methods. The main channel of the Niobrara was partitioned into three distinct fluvial geomorphic provinces: an upper province characterized by open valleys and a sinuous, equiwidth channel; a central province characterized by mixed valley and channel settings, including several entrenched canyon reaches; and a lower province where the valley is wide, yet restricted, but the river also is wide and persistently braided. Within the three fluvial geomorphic provinces, 36 geomorphic segments were identified using a customized, process-orientated classification scheme, which described the basic physical characteristics of the Niobrara River and its valley. Analysis of the longitudinal slope characteristics indicated that the Niobrara River longitudinal profile may be largely bedrock-controlled, with slope inflections co-located at changes in bedrock type at river level. Hydraulic geometry relations indicated that local (at-a-station) channel adjustments of the Niobrara River to changing discharge are accommodated mainly by changes in velocity, and streamwise adjustments are accommodated through changes in channel width. Downstream hydraulic geometry relations are in general agreement with values previously published for rivers of the Great Plains, but coefficients are likely skewed low because the locations of the streamflow-gaging stations used in this analysis are located at natural or engineered constrictions and may not be accurately representing downstream adjustment processes of the Niobrara River. A demonstration analysis of hydraulic microhabitat attributes at a single station indicated that changes in velocity-related habitat types is the primary microhabitat adjustment over a range of discharges, but the magnitude of that adjustment for any particular discharge is temporally variable

    Sediment Samples and Channel-geometry Data, Lower Platte River Watershed, Nebraska, 2010

    Get PDF
    The relation between channel width and stream physical habitat in the lower Platte River in eastern Nebraska was studied as part of the lower Platte River Cumulative Impact Study. The purpose of this component was to document the grain-size distribution of sediment deposited as specific types of physical features, such as sandbars, banks, and stream beds within different hydraulic habitats, within the lower Platte River system. In so doing, the major sources of sediment for sandbar creation downstream are described. Sediment samples were collected from 11 reaches of the lower Platte River from Silver Creek, Nebraska, to the mouth of the Platte River, and from 4 tributary streams. Two bed-material samples, 2 bank-material samples, and 3 sandbar-material samples were collected at main-stem sampling sites, and 1 sample each of bed material and bank material was collected at each tributary sampling site. Aspects of channel geometry, such as channel width, sandbar height and width, and bank height, were measured at each sampled site. This report presents the channel-geometry results and documents the sample-collection methods

    Sediment Monitoring to Support Modeling a Reservoir Sediment Flush on a Sand-bed River in Northern Nebraska

    Get PDF
    The United States Geological Survey (USGS) in cooperation with the United States Army Corps of Engineers (USACE), monitored a sediment flush event from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. Data collected during the flush was used to validate a one-dimensional sediment transport model developed by the USACE. The USACE surveyed 26 cross sections within the reservoir and as far as 1 kilometer (km) upstream from the reservoir pool to about 10 km downstream from the dam before and after the flushing event to measure erosion and deposition. They also collected surficial sediment samples from sandbars within the reservoir. The USGS assisted USACE in its model validation efforts by collecting sediment data before, during and after the flush using both traditional sampling techniques and a continuous laser-diffraction particle-size analyzer. From the context of longitudinal volumetric change, the model replicated erosion in the upper half of the reservoir within four percent of that observed by survey data and it replicated deposition downstream of the dam within 5 percent. However, the model underpredicted the erosion of the accumulated delta sediments in the reservoir by 43 percent. The timing and magnitude of suspended sediment concentrations produced by the model compared reasonably well to the discrete suspended-sediment sample results. These results indicate cross-sectional survey data and discrete sediment data may be adequate for developing sediment flush models for reservoirs in similar well-sorted sand-bed streams. The USGS installed a continuous particle-size analyzer immediately downstream from the dam. Although the particle-size analyzer was successful in providing a large dataset during the flushing event, based on discrete point samples, it overestimated the amount of fine particles and underrepresented the amount of coarse material. It also required a significant amount of maintenance during the flushing event because of the large sediment load and the rapid bed aggradation. The maintenance issues with the particle-size analyzer along with uncertainty in the correlation to discrete suspended-sediment samples reduced its value for model validation. However, these issues may have been specific to the flushing event at Spencer Dam, which involved a sand-bed dominated stream and a wide channel. It is foreseeable that other sediment flush models developed for different streams with dissimilar sediment gradations may benefit from similar continuous sediment data, but adequate planning and evaluation should be performed

    Hydrogeomorphic Segments and Hydraulic Microhabitats of the Niobrara River, Nebraska, with Special Emphasis on the Niobrara National Scenic River

    Get PDF
    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources’ recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as “fully appropriated” has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the United States Geological Survey USGS) investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit length of river, are: a width-restricted valley confinement condition, sinuous-planview pattern, irregular channel width, and an alternate bar configuration. The Niobrara River in the study area flows through a diversity of fluvial geomorphic settings in its traverse across northern Nebraska. In the Meandering Bottoms (MB) fluvial geomorphic province, river discharge magnitudes are low, and the valley exerts little control on the channel-planview pattern. Within the CRB province, the river flows over a diversity of geologic formations, and the valley and river narrow and expand in approximate synchronicity. In the Braided Bottoms (BB) fluvial geomorphic province, the river primarily flows over Cretaceous Pierre Shale, the valley and channel are persistently wide, and the channel slope is generally uniform. The existence of vegetated islands and consequent multithread channel environments, indicated by a higher braided index, mostly coincided with reaches having gentler slopes and less unit stream power. Longitudinal hydrology curves indicate that the flow of the Niobrara River likely is dominated by groundwater as far downstream as Norden. Unit stream power values in the study area vary between 0 and almost 2 pounds per foot per second. Within the MB province, unit stream power steadily increases as the Niobrara gains discharge from groundwater inflow, and the channel slope steepens. The combination of steep slopes, a constrained channel width, and persistent flow within the CRB province results in unit stream power values that are between three and five times greater than those in less confined segments with comparable or greater discharges. With the exception of hydrogeomorphic segment 3, which is affected by Spencer Dam, unit stream power values in the BB province are generally uniform. Channel sinuosity values in the study area varied generally between 1 and 2.5, but with locally higher values measured in the MB province and at the entrenched bedrock meanders of hydrogeomorphic segment 18 in the CRB province. The differences in channel morphology and hydraulic geometries between fluvial geomorphic provinces are evident in the types, relative abundance, and response of hydraulic microhabitats to changing discharges. The four gaging stations chosen for hydraulic microhabitat analysis are distributed among three different fluvial geomorphic provinces. In the MB province, the smaller channel and lower discharges resulted in the dominance of shallow and intermediate-depth hydraulic environments with the vast majority of hydraulic microhabitat restricted to shallow categories even during upper-decile discharges. In the CRB province, intermediate depth hydraulic conditions, particularly intermediate-swift, dominate over all ranges of discharge. Hydraulic microhabitat conditions were most diverse in the BB province, with most hydraulic microhabitat categories present over the entire range of discharges analyzed. The calculated differences in hydraulic microhabitat distributions, abundance, and adjustments between streamflow-gaging stations were the result of differences in physical structure of the channel and subsequent channel hydraulic geometry. At the reach scale, field measurements made in water years 2008 and 2009 in four study reaches within the Scenic Reach were used to (1) characterize the elevation and geomorphic processes associated with fluvial landforms, (2) build hydraulic geometry relations, (3) examine flow hydraulics over a range of discharges, and (4) examine the types and responses of hydraulic microhabitats to a range of flow magnitudes. Four landform groups were identified and named in order of increasing elevation: low flood plains, intermediate flood plains, low terraces, and high terraces. The terraces were poorly characterized because the surveys did not extend across the full width of the alluvial valley bottom. The two lowest fluvial landforms are likely active in the modern hydroclimatic regime. Sediment samples obtained in the study reaches indicate that the primary bed material in the active channel ranged in size from coarse silt to coarse sand. Grain-size distributions from samples also indicate that the bed of the Niobrara River among the study reaches coarsens and has increasing grainsize variability in the downstream direction. Values of at-a-station hydraulic geometry exponents indicate that the Niobrara River in the study reaches adjusts its geometry to changing discharges primarily through increases in flow depth and velocity. Relations at one cross section indicated that, at least locally, changes in width were also an important channel adjustment mechanism. Hydraulic behavior over the range of flows measured was not consistent among all study reaches, but two general modes of hydraulic behavior were observed in the reaches with substantial coverage of the bed by fine sediment. At the Sunny Brook and Muleshoe study reaches, average boundary-shear stress remained approximately constant, and hydraulic resistance decreased, for discharges below 900 cubic feet per second (ft3/s). Above 900 ft3/s, average boundary shear stress and hydraulic resistance both increased. The Rock Barn study reach did not exhibit the same two-mode hydraulic behavior observed at the Sunny Brook and Muleshoe reaches. The coincident increase in boundary shear stress above 900 ft3/s observed at the Sunny Brook and Muleshoe study reaches represents a potential hydraulic threshold above which bedload transport rates were likely to increase markedly. No consistent bed-adjustment pattern (scour or fill) was identified in the study reaches over the range of flows or over the measurement season. Analysis of hydraulic microhabitats over the range of discharges measured at the study reaches indicates that some percentage of most habitat niche categories was available for at least one discharge condition, but the majority of hydraulic habitat available was within the intermediate-swift and deepswift habitat niche categories. Deep-swift conditions dominated nearly all study reaches under all measured discharge conditions. Slight differences in habitat distributions were observed between the study reaches with substantial coverage of the bed by fine sediment—Sunny Brook, Muleshoe, and Rock Barn—and the bedrock-dominated reach, Crooked Creek. Although the four study reaches occupy three different hydrogeomorphic segments, the types, relative abundance, and response of hydraulic microhabitat niche distributions to changing discharge conditions generally were similar among all reaches

    Documentation of Particle-size Analyzer Time Series, and Discrete Suspended-sediment and Bed-Sediment Sample Data Collection, Niobrara River Near Spencer, Nebraska, October 2014

    Get PDF
    Document abstract The Ubited States Geological Survey (USGS), in cooperation with the United States Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and US Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data. Data abstract In the fall of 2014 (October-November) the USGS in cooperation with the US Army Corps of Engineers collected sediment samples (suspended and bed material) at several sites on the Niobrara River in Nebraska near the Spencer Dam prior to, during, and immediately after a sediment-flushing event. Suspended-sediment samples were analyzed for sediment concentration and percent finer than sand. Bed sediment samples were analyzed for particle-size distribution using standard classes by sieve analysis. In addition, a Sequoia LISST Streamside particle-size analyzer (PSA) was deployed during the first week of the flush; this unit collected suspended-sediment concentration and grain-size data. Sampled sites included the bridge on U.S. Hwy 281, county road 508 Ave bridge south of Lynch, Nebraska, and the county road bridge south of Verdel, Nebraska This part of the data release consists of discrete suspended-sediment and bed-sediment data tables, PSA data tables, and a data table of results from discrete samples collected manually at the intake to the PSA. An accompanying shapefile of sample locations may be found at https://www.sciencebase.gov/catalog/item/5a5e1596e4b06e28e9be47db

    Suitability of River Delta Sediment as Proppant, Missouri and Niobrara Rivers, Nebraska and South Dakota, 2015

    Get PDF
    Document abstract Sediment management is a challenge faced by reservoir managers who have several potential options, including dredging, for mitigation of storage capacity lost to sedimentation. As sediment is removed from reservoir storage, potential use of the sediment for socioeconomic or ecological benefit could potentially defray some costs of its removal. Rivers that transport a sandy sediment load will deposit the sand load along a reservoir-headwaters reach where the current of the river slackens progressively as its bed approaches and then descends below the reservoir water level. Given a rare combination of factors, a reservoir deposit of alluvial sand has potential to be suitable for use as proppant for hydraulic fracturing in unconventional oil and gas development. In 2015, the United States Geological Survey (USGS) began a program of researching potential sources of proppant sand from reservoirs, with an initial focus on the Missouri River subbasins that receive sand loads from the Nebraska Sand Hills. This report documents the methods and results of assessments of the suitability of river delta sediment as proppant for a pilot study area in the delta headwaters of Lewis and Clark Lake, Nebraska and South Dakota. Results from surface-geophysical surveys of electrical resistivity guided borings to collect 3.7-meter long cores at 25 sites on delta sandbars using the direct-push method to recover duplicate, 3.8-centimeter-diameter cores in April 2015. In addition, the USGS collected samples of upstream sand sources in the lower Niobrara River valley. At the laboratory, samples were dried, weighed, washed, dried, and weighed again. Exploratory analysis of natural sand for determining its suitability as a proppant involved application of a modified subset of the standard protocols known as American Petroleum Institute (API) Recommended Practice (RP) 19C. The RP19C methods were not intended for exploration-stage evaluation of raw materials. Results for the washed samples are not directly applicable to evaluations of suitability for use as fracture sand because, except for particle-size distribution, the API-recommended practices for assessing proppant properties (sphericity, roundness, bulk density, and crush resistance) require testing of specific proppant size classes. An optical imaging particle-size analyzer was used to make measurements of particle-size distribution and particle shape. Measured samples were sieved to separate the dominant-size fraction, and the separated subsample was further tested for roundness, sphericity, bulk density, and crush resistance. For the bulk washed samples collected from the Missouri River delta, the geometric mean size averaged 0.27 millimeters (mm), 80 percent of the samples were predominantly sand in the API 40/70 size class, and 17 percent were predominantly sand in the API 70/140 size class. Distributions of geometric mean size among the four sandbar complexes were similar, but samples collected from sandbar complex B were slightly coarser sand than those from the other three complexes. The average geometric mean sizes among the four sandbar complexes ranged only from 0.26 to 0.30 mm. For 22 main-stem sampling locations along the lower Niobrara River, geometric mean size averaged 0.26 mm, an average of 61 percent was sand in the API 40/70 size class, and 28 percent was sand in the API 70/140 size class. Average composition for lower Niobrara River samples was 48 percent medium sand, 37 percent fine sand, and about 7 percent each very fine sand and coarse sand fractions. On average, samples were moderately well sorted. Particle shape and strength were assessed for the dominant-size class of each sample. For proppant strength, crush resistance was tested at a predetermined level of stress (34.5 megapascals [MPa], or 5,000 pounds-force per square inch). To meet the API minimum requirement for proppant, after the crush test not more than 10 percent of the tested sample should be finer than the precrush dominant-size class. For particle shape, all samples surpassed the recommended minimum criteria for sphericity and roundness, with most samples being well-rounded. For proppant strength, of 57 crush-resistance tested Missouri River delta samples of 40/70-sized sand, 23 (40 percent) were interpreted as meeting the minimum criterion at 34.5 MPa, or 5,000 pounds-force per square inch. Of 12 tested samples of 70/140-sized sand, 9 (75 percent) of the Missouri River delta samples had less than 10 percent fines by volume following crush testing, achieving the minimum criterion at 34.5 MPa. Crush resistance for delta samples was strongest at sandbar complex A, where 67 percent of tested samples met the 10-percent fines criterion at the 34.5-MPa threshold. This frequency was higher than was indicated by samples from sandbar complexes B, C, and D that had rates of 50, 46, and 42 percent, respectively. The group of sandbar complex A samples also contained the largest percentages of samples dominated by the API 70/140 size class, which overall had a higher percentage of samples meeting the minimum criterion compared to samples dominated by coarser size classes; however, samples from sandbar complex A that had the API 40/70 size class tested also had a higher rate for meeting the minimum criterion (57 percent) than did samples from sandbar complexes B, C, and D (50, 43, and 40 percent, respectively). For samples collected along the lower Niobrara River, of the 25 tested samples of 40/70-sized sand, 9 samples passed the API minimum criterion at 34.5 MPa, but only 3 samples passed the more-stringent criterion of 8 percent postcrush fines. All four tested samples of 70/140 sand passed the minimum criterion at 34.5 MPa, with postcrush fines percentage of at most 4.1 percent. For two reaches of the lower Niobrara River, where hydraulic sorting was energized artificially by the hydraulic head drop at and immediately downstream from Spencer Dam, suitability of channel deposits for potential use as fracture sand was confirmed by test results. All reach A washed samples were well-rounded and had sphericity scores above 0.65, and samples for 80 percent of sampled locations met the crush-resistance criterion at the 34.5-MPa stress level. A conservative lower-bound estimate of sand volume in the reach A deposits was about 86,000 cubic meters. All reach B samples were well-rounded but sphericity averaged 0.63, a little less than the average for upstream reaches A and SP. All four samples tested passed the crush-resistance test at 34.5 MPa. Of three reach B sandbars, two had no more than 3 percent fines after the crush test, surpassing more stringent criteria for crush resistance that accept a maximum of 6 percent fines following the crush test for the API 70/140 size class. Relative to the crush-resistance test results for the API 40/70 size fraction of two samples of mine output from Loup River settling-basin dredge spoils near Genoa, Nebr., four of five reach A sample locations compared favorably. The four samples had increases in fines composition of 1.6–5.9 percentage points, whereas fines in the two mine-output samples increased by an average 6.8 percentage points. Data abstract Deltaic sand deposits at the head of Lewis and Clark Lake, Nebraska-South Dakota were investigated for suitability for use as a proppant feedstock resource in unconventional oil or gas production. The physical characteristics of the deposits are described in four supplemental data sets in varied file formats. First, for the direct-push cores collected at four sandbar complexes in the Missouri River delta, detailed descriptions of core lithology and texture are provided in Comma Separated Values (CSV) file format. Second, apparent resistivity results from capacitively coupled (CC) resistivity profiles collected along surface-geophysical reconnaissance lines are displayed using standardized color ramps and vertically exaggerated scales. The data are provided in PNG file format. Third, laboratory reports of sediment particle size and shape statistics are provided as PDF-formatted sheets, typically with three sheets per sample corresponding to optical particle-size analyzer (OPSA) results for (1) the washed sample, (2) the subsample sieved to retain only the dominant proppant size class (for example, API 40/70 size or 70/140 size), and (3) the same subsample after undergoing a crush-resistance test at a single stress level of 34.5 MPa (5,000 lbf/in2). These laboratory reports also include graphs showing the particle-size distributions measured by the OPSA. Fourth, photomicrographs of each sample, often but not always provided for each of the three OPSA-analyzed subsamples of each sample. For scale, each photomicrograph includes a 0.5-mm (500 micron)-diameter pencil lead within the field of view. The images are provided in JPEG file format. Images are located with the laboratory results for each sample
    corecore