114 research outputs found

    Interactive storytelling with MemoryLane

    Get PDF

    MemoryLane: reminiscence for older adults

    Get PDF

    MemoryLane: An intelligent mobile companion for elderly users

    Get PDF

    Intelligent companions for older adults

    Get PDF

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Precision Ultrasonic Thickness Measurements of Thin Steel Disks

    Get PDF
    The accurate in-situ measurement of part dimensions during fabrication is of much interest to the manufacturing industry, especially for untended manufacturing. The goal of this work is to apply non-contacting ultrasonic techniques to the precise thickness measurement, during machining, of metal parts of rotation having a nominal wall thickness of 1.5 mm. The desired accuracy is ±.0025 mm at all points on the approximately 200 mm diameter steel shells, where part access is restricted to one side at a time for the measurement. In a feasibility study, dimensional information using eddy current techniques was overwhelmed by conductivity variations in the 304-stainless steel samples [1]. The approach here is to precisely measure ultrasonic echo transit times, and calulate part dimensions, knowing the material sound speed. To that end, feasibility results on flat disk specimens possessing a wide range of grain sizes representative of the shell’s variable metallurgy are reported here. Factors affecting ultrasonic dimensional precision including grain size, texture, sample temperature and surface roughness are discussed, with an emphasis on precision limitations due to finite grain sizes in thin parts. Both longitudinal (10 to 30 MHz) and shear (3 MHz) wave measurements were made, the latter using electromagnetic acoustic transducers (EMATS).</p
    • …
    corecore