506 research outputs found

    Recycling behaviour of italian citizens in connection with the clarity of on-pack labels. A bottom-up survey

    Get PDF
    The present work studies, through an online survey, the recycling behaviours of a representative sample of Italian end users, in connection with the effectiveness of on-pack recycling indications of different packed materials. The study has a special focus on the clarity of on-pack recycling indications to convey waste sorting information, and the impact of clear and straightforward labelling to improve the sorting result. The work took advantage of social media as the distribution platform, thus obtaining a relatively high involvement of citizens. To investigate the representativeness of the sample, some of its characteristics were subject to checks and comparisons to their corresponding values of the Italian population. According to almost three-quarters of the responders, a clear and straightforward labelling will improve the result of their waste sorting drastically. The general awareness of the answerers relative to the importance of waste recycling and willingness to improve the quality of their sorted waste is very high among the participants but the overall satisfaction of the on-pack indications is relatively low. The score of on-pack labels in conveying information on recycling and waste segregation is evaluated as improvable. A higher perception of circular economy concept leads to more re-utilisation of the packaging parts, which increases with the awareness about the importance of recycling

    Remote digital monitoring during the retention phase of orthodontic treatment: A prospective feasibility study

    Get PDF
    Objective: To evaluate if a remote digital monitoring system added at the end of orthodontic treatment could positively influence the retention phase by reducing the occurrence of misfit of removable appliances, number of emergency appointments (EA), and orthodontic relapse. Methods: Twenty-seven patients who completed active orthodontic treatment were divided into the study and control groups. In addition to the standard chairside follow-up appointments at month 1 (T1), month 3 (T2), month 6 (T3), the study group patients were monitored using Dental Monitoring® with monthly intra-oral scans. Occurrence of misfit of removable retainers, number of EAs, and intercanine width change were recorded for both groups. Differences in EAs and retainer fit were assessed using the chi-square test. Intra-group and inter-group differences in the intercanine width were assessed with Friedman test and Mann–Whitney U test, respectively (α = 0.05). Results: The study group showed a significantly lower occurrence of misfit of removable retainers (p = 0.027) compared to the control group. No significant inter-and intra-group difference was found in the EAs and intercanine width change at each time-point. Conclusions: Integrating remote monitoring systems, such as Dental Monitoring®, to the retention phase of the orthodontic treatment may lower the occurrence of misfit of removable retainers. However, a small sample size and a short observation period limit the strength of this evidence. These preliminary results tentatively suggest that remote monitoring technologies may be beneficial, especially during the COVID-19 pandemic, when the regularity of in-office visits might be disrupted

    A validation roadmap of multi-physics simulators of the resonator of mw-class cw gyrotrons for fusion applications

    Get PDF
    For a few years the multi-physics modelling of the resonance cavity (resonator) of MW-class continuous-wave gyrotrons, to be employed for electron cyclotron heating and current drive in magnetic confinement fusion machines, has gained increasing interest. The rising target power of the gyrotrons, which drives progressively higher Ohmic losses to be removed from the resonator, together with the need for limiting the resonator deformation as much as possible, has put more emphasis on the thermal-hydraulic and thermo-mechanic modeling of the cavity. To cope with that, a multi-physics simulator has been developed in recent years in a shared effort between several European institutions (the Karlsruher Institut fĂĽr Technologie and Politecnico di Torino, supported by Fusion for Energy). In this paper the current status of the tool calibration and validation is addressed, aiming at highlighting where any direct or indirect comparisons with experimental data are missing and suggesting a possible roadmap to fill that gap, taking advantage of forthcoming tests in Europe

    A validation roadmap of multi-physics simulators of the resonator of mw-class cw gyrotrons for fusion applications

    Get PDF
    For a few years the multi-physics modelling of the resonance cavity (resonator) of MW-class continuous-wave gyrotrons, to be employed for electron cyclotron heating and current drive in magnetic confinement fusion machines, has gained increasing interest. The rising target power of the gyrotrons, which drives progressively higher Ohmic losses to be removed from the resonator, together with the need for limiting the resonator deformation as much as possible, has put more emphasis on the thermal-hydraulic and thermo-mechanic modeling of the cavity. To cope with that, a multi-physics simulator has been developed in recent years in a shared effort between several European institutions (the Karlsruher Institut fĂĽr Technologie and Politecnico di Torino, supported by Fusion for Energy). In this paper the current status of the tool calibration and validation is addressed, aiming at highlighting where any direct or indirect comparisons with experimental data are missing and suggesting a possible roadmap to fill that gap, taking advantage of forthcoming tests in Europe

    Benchmark of the GETTHEM Vacuum Vessel Pressure Suppression System (VVPSS) model for a helium-cooled EU DEMO blanket

    Get PDF
    In the nuclear field, the correct evaluation of the effects of design-basis accidents is fundamental to correctly design the countermeasures needed to preserve the integrity of the containment barriers and to confine the ra-dioactive material. Therefore, both in fission and in fusion, notwithstanding the different amounts of radioac-tive materials, the availability of models that can predict the accidental transients is crucial. Here we describe the model recently developed to analyse an in-vessel Loss-Of-Coolant-Accident in the EU DEMO fusion reactor, and implemented in the GETTHEM code. In particular, we focus on the release of coolant inside the Vacuum Vessel (VV) following a break in the breeding blanket cooling loop, considering a helium-cooled blanket solution. The model of the VV pressure suppression system is calibrated and bench-marked exploiting results from the validated CONSEN code by ENEA

    Analysis of the effects of primary heat transfer system isolation valves in case of in-vessel loss-of-coolant accidents in the EU DEMO

    Get PDF
    As DEMO is the first European device planned to produce electricity from fusion, the volume of its Primary Heat Transfer Systems (PHTS) will be consistently larger if compared to present or next-generation tokamaks such as ITER. The consequences of an in-vessel Loss-Of-Coolant Accident (LOCA) would then be more important, and within the EUROfusion Consortium different possible mitigation measures are being investigated. Among these, the introduction of Isolation Valves (IsoVs) on the main cooling loops of the Breeding Blanket is being considered, in view of the many benefits they would introduce, not only in case of accidents, but also e.g. during the maintenance of the in-vessel components. Fast-closing IsoVs on the PHTS would help in relaxing not only the requirements of the VV pressure suppression system (VVPSS) design, but also those related to the expansion volumes that shall accommodate the contaminated coolant discharged from the PHTS after a LOCA. In the present work, the GETTHEM code, the system-level thermal-hydraulic model developed for the EU DEMO at Politecnico di Torino, is used to assess the beneficial effects of the introduction of the IsoVs. The effects of the actuation time of the IsoVs and of their location are parametrically investigated, considering both water and helium as PHTS coolants, with particular reference to the reduction of the in-vessel space-averaged pressure and of the suppression system size

    Test and modeling of the hydraulic performance of high-efficiency cooling configurations for gyrotron resonance cavities

    Get PDF
    The design and manufacturing of different full-size mock-ups of the resonance cavity of gyrotrons, relevant for fusion applications, were performed according to two different cooling strategies. The first one relies on mini-channels, which are very promising in the direction of increasing the heat transfer in the heavily loaded cavity, but which could face an excessively large pressure drop, while the second one adopts the solution of Raschig rings, already successfully used in European operating gyrotrons. The mock-ups, manufactured with conventional techniques, were hydraulically characterized at the Thales premises, using water at room temperature. The measured pressure drop data were used to validate the corresponding numerical computational fluid dynamics (CFD) models, developed with the commercial software STAR-CCM+ (Siemens PLM Software, Plano TX, U.S.A.) and resulting in excellent agreement with the test results. When the validated models were used to compare the two optimized cooling configurations, it resulted that, for the same water flow, the mini-channel strategy gave a pressure drop was two-fold greater than that of the Raschig rings strategy, allowing a maximum flow rate of 1 × 10–3 m3/s to meet a maximum allowable pressure drop of 0.5 MPa

    Dynamic thermal-hydraulic modelling of the EU DEMO HCPB breeding blanket cooling loops

    Get PDF
    A global, system-level thermal-hydraulic model of the EU DEMO tokamak fusion reactor is currently under development and implementation in a suitable software at Politecnico di Torino, including the relevant heat transfer and fluid dynamics phenomena, which affect the performance of the different cooling circuits and components and their integration in a consistent design. The model is based on an object-oriented approach using the Modelica language, which easily allows to preserve the high modularity required at this stage of the design. The first module of the global model will simulate the blanket cooling system and will be able to investigate different coolant options and different cooling schemes, to be adapted to the different blanket systems currently under development in the Breeding Blanket (BB) project. The paper presents the Helium-Cooled Pebble Bed (HCPB) module of the EU DEMO blanket cooling loops system model. The model is used to compare different schemes for the cooling of the different components of the HCPB BB, and to suggest improvements aimed at optimizing the pumping power required by the cooling system. The model is then used to analyse a pulsed scenario, characteristic of the EU DEMO operation

    Analysis of the Flow Distribution in the Back Supporting Structure Manifolds of the HCPB Breeding Blanket for the EU DEMO Fusion Reactor

    Get PDF
    The European Union Demonstration Fusion Power Reactor (EU DEMO) is facing its preconceptual design phase. In this phase, the research and development activities make extensive use of computational tools, to, e.g., verify the design calculations or to perform parametric analyses aimed at optimization. The design of the breeding blanket (BB), which will be a first-of-a-kind component in EU DEMO, is supported from the thermal-hydraulic point of view by local three-dimensional (3-D) computational fluid dynamics (CFD) analyses, mainly aimed at verifying the heat removal capabilities of the system, and by analyses at the system level using one-dimensional (1-D) codes. This work presents the development and application of a detailed 1-D model of the coolant manifolds for the helium-cooled pebble bed BB concept for EU DEMO. This model, implemented in the GEneral Tokamak THErmal-hydraulic Model (GETTHEM), allows fast analyses to be performed at the global level but still maintain a good level of detail concerning the coolant distribution. The first results obtained with the model prove that 3-D CFD analyses of the manifolds may provide misleading results due to nonrepresentative boundary conditions (BCs), which must be used to avoid having a domain that is too complex. The application of a global model, which is indeed characterized exploiting local analyses, can in turn provide better BCs to the detailed 3-D CFD analyses

    Effects of remote digital monitoring on oral hygiene of orthodontic patients: a prospective study

    Get PDF
    Background: Remote digital monitoring during orthodontic treatment can help patients in improving their oral hygiene performance and reducing the number of appointments due to emergency reasons, especially in time of COVID-19 pandemic where non-urgent appointments might be discouraged. Methods: Thirty patients scheduled to start an orthodontic treatment were divided into two groups of fifteen. Compared to controls, study group patients were provided with scan box and cheek retractor (Dental Monitoring®) and were instructed to take monthly intra-oral scans. Plaque Index (PI), Gingival Index (GI), and White Spot Lesions (WSL) were recorded for both groups at baseline (t0), every month for the first 3 months (t1, t2, t3), and at 6 months (t4). Carious Lesions Onset (CLO) and Emergency Appointments (EA) were also recorded during the observation period. Inter-group differences were assessed with Student's t test and Chi-square test, intra-group differences were assessed with Cochran’s Q-test (significance α = 0.05). Results: Study group patients showed a significant improvement in plaque control at t3 (p = 0.010) and t4 (p = 0.039), compared to control group. No significant difference was observed in the number of WSL between the two groups. No cavities were detected in the study group, while five CLO were diagnosed in the control group (p = 0.049). A decreased number of EA was observed in the study group, but the difference was not significant. Conclusions: Integration of a remote monitoring system during orthodontic treatment was effective in improving plaque control and reducing carious lesions onset. The present findings encourage orthodontists to consider this technology to help maintaining optimal oral health of patients, especially in times of health emergency crisis
    • …
    corecore