54 research outputs found

    Numerical Simulations of Hyperfine Transitions of Antihydrogen

    Full text link
    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision

    Measurement of the hyperfine structure of antihydrogen in a beam

    Full text link
    A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.Comment: 5th International Symposium on Symmetries in Subatomic Physics (SSP2012), Groningen (The Netherlands), June 18 to 22, 201

    An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    Full text link
    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.Comment: 8 pages, 4 figures, proceedings for conference EXA 2014 (Exotic Atoms - Vienna

    A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer

    Full text link
    The antihydrogen programme of the ASACUSA collaboration at the antiproton decelerator of CERN focuses on Rabi-type measurements of the ground-state hyperfine splitting of antihydrogen for a test of the combined Charge-Parity-Time symmetry. The spectroscopy apparatus consists of a microwave cavity to drive hyperfine transitions and a superconducting sextupole magnet for quantum state analysis via Stern-Gerlach separation. However, the small production rates of antihydrogen forestall comprehensive performance studies on the spectroscopy apparatus. For this purpose a hydrogen source and detector have been developed which in conjunction with ASACUSA's hyperfine spectroscopy equipment form a complete Rabi experiment. We report on the formation of a cooled, polarized, and time modulated beam of atomic hydrogen and its detection using a quadrupole mass spectrometer and a lock-in amplification scheme. In addition key features of ASACUSA's hyperfine spectroscopy apparatus are discussed.

    Spectroscopy Apparatus for the Measurement of The Hyperfine Structure of Antihydrogen

    Full text link
    The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy apparatus developed to be coupled to the antihydrogen production setup (CUSP).Comment: Proceedings of the 11th International Conference on Low Energy Antiproton Physics (LEAP 2013) held in Uppsala, Sweden, 10 to 15 June, 201

    Evidence for Irradiation Triggered Nonuniform Defect Distribution In Multiharmonic Magnetic Susceptibility of Neutron Irradiated YBa2Cu3O7-x

    Full text link
    Multiharmonic ac-magnetic susceptibility \ch11,\chi2,chi3, of neutron irradiated Li-doped YBa2Cu3O7-x has revealed a nonmonotonic dependence of all harmonics on the neutron fluence. The irradiation has a strongly depressive influence on the intergrain connection suggesting an increase of the effective thickness of the intergranular Josephson junction at aneutron fluence of 0.98x1017^{17} cm2_{-2}. Less damaged are the intragrain properties. A spectacular enhancement of the superconducting intragranular properties reflected in the characteristics of all harmonics was observed at highest fluence \Phi = 9.98x1017^{17} cm2_{-2}. We assume that this effect results from the development of a space inhomogeneous distribution with alternating defectless and defect rich regions.Comment: 24 pages, 9 figures, accepted to J. Supercon

    Mixed state properties of superconducting MgB2 single crystals

    Full text link
    We report on measurements of the magnetic moment in superconducting MgB2 single crystals. We find \mu_0H_{c2}^c(0) = 3.2 T, \mu_0H_{c2}^{ab}(0) = 14.5 T, \gamma = 4.6, \mu_0H_c(0) = 0.28 T, and \kappa(T_c) = 4.7. The standard Ginzburg-Landau and London model relations lead to a consistent data set and indicate that MgB2 is a clean limit superconductor of intermediate coupling strength with very pronounced anisotropy effects

    Charge carrier concentration and structural transition temperatures in Heusler alloys Ni50Mn36Sb14-xZx (Z = Al, Ge; X = 0; 1; 2; 3; 4)

    Full text link
    The temperature dependences of magnetization and electrical resistance of the Ni50Mn36Sb14-xZx (Z = Al, Ge; x = 0; 1; 2; 3; 4) alloys have been used to determine the structural transition temperatures (STT) such as: Ms, Mf, As and Af (temperatures of the start and finish of martensitic and austenitic transformations, respectively). Effect of various parameters (e/a, Vcell, n) on the STT was studied. Using Hall Effect the concentration of charge carriers n∗ was obtained and it was found that n∗ is not strongly correlated with a behaviour of STT, there is only a general trend with exceptions. © Published under licence by IOP Publishing Ltd.Russian Foundation for Basic Research, RFBR: 18-02-00739The results of this work were obtained within the state assignment of Minobrnauki of Russia (theme “Spin” No. АААА-А18-118020290104-2) and “New functional materials for promising technologies: synthesis, properties, spectroscopy and computer simulation” (No. AAAA-A19-119031890025-9), supported in part by RFBR grant (project No. 18-02-00739)

    Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA

    Full text link
    The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented.Comment: Proceedings of the 7th International Syposium on Symmetries in Subatomic Physics SSP2018, Aachen (Germany), 10 - 15 Jun 2018. Corrected error in Fig. 1, updated caption, add titles to reference
    corecore