202 research outputs found

    Expert Opinions and Logarithmic Utility Maximization in a Market with Gaussian Drift

    Get PDF
    This paper investigates optimal portfolio strategies in a financial market where the drift of the stock returns is driven by an unobserved Gaussian mean reverting process. Information on this process is obtained from observing stock returns and expert opinions. The latter provide at discrete time points an unbiased estimate of the current state of the drift. Nevertheless, the drift can only be observed partially and the best estimate is given by the conditional expectation given the available information, i.e., by the filter. We provide the filter equations in the model with expert opinion and derive in detail properties of the conditional variance. For an investor who maximizes expected logarithmic utility of his portfolio, we derive the optimal strategy explicitly in different settings for the available information. The optimal expected utility, the value function of the control problem, depends on the conditional variance. The bounds and asymptotic results for the conditional variances are used to derive bounds and asymptotic properties for the value functions. The results are illustrated with numerical examples.Comment: 21 page

    Correction to: 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: one disease - many faces

    Get PDF
    Correction to: Orphanet Journal of Rare Diseases (2020) 15:48 https://doi.org/10.1186/s13023-020-1319-

    Biomarkers for Drug Development in Propionic and Methylmalonic Acidemias

    Get PDF
    There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13C-propionate (exhaled 13CO2), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias

    Propionic acidemia in a previously healthy adolescent with acute onset of dilated cardiomyopathy

    Get PDF
    Propionic acidemia (PA) is a rare autosomal recessive organic aciduria resulting from defects in propionyl-CoA-carboxylase (PCC), a key enzyme of intermediate energy metabolism. PA mostly manifests during the neonatal period, when affected newborns develop severe metabolic acidosis and hyperammonemia. We present a previously healthy teenager, who suffered from acute fatigue and breathlessness. The patient was tachycardic, displayed a precordial heave and a systolic murmur. Cardiac investigations revealed severe dilated cardiomyopathy (DCM). Biochemical work up led to the diagnosis of PA. Remarkably, this patient of consanguineous Hispanic origin was in a good general health condition before the acute onset of DCM. Diagnosis of PA was confirmed by enzymatic and molecular genetic analysis, the latter revealing a novel homozygous mutation in the PCCB gene (c.1229G > A; p.R410Q). Residual PCC enzyme activity of approximately 14% of normal was detected in patient's lymphocytes and fibroblasts, thereby providing a possible explanation for the hitherto asymptomatic phenotype. Conclusion: Isolated DCM, although rare, can be the leading and/or sole symptom of late-onset PA. Therefore, patients with DCM should receive a comprehensive diagnostic evaluation including selective screening for inborn errors of metabolism

    An Autosomal-Recessive Form of Cutis Laxa Is Due to Homozygous Elastin Mutations, and the Phenotype May Be Modified by a Heterozygous Fibulin 5 Polymorphism

    Get PDF
    Cutis laxa (CL) is a heterogeneous group of connective tissue disorders characterized by loose, sagging skin and variable involvement of other organs. Autosomal-dominant forms are relatively mild, and may be caused by mutations in the elastin gene, whereas the more severe recessive forms have been associated with mutations in the fibulin 4 and fibulin 5 genes, as well as in a vesicular ATPase subunit. We describe here a previously unreported autosomal-recessive form of CL caused by homozygous recessive mutations in exon 12 of the elastin gene (p.P211S) in three patients from two related consanguineous Syrian families. Furthermore, we found that the presence of a polymorphism in the fibulin 5 gene in one of the patients seems to modify the phenotype, producing more severe symptoms. This polymorphism (p.L301M) was associated with mild symptoms in the mother of the patient, who was heterozygous for both the elastin and fibulin 5 mutations. To our knowledge, autosomal-recessive CL owing to homozygous mutations in the elastin gene has not been reported previously

    Propionic acidemia in a previously healthy adolescent with acute onset of dilated cardiomyopathy

    Full text link
    Propionic acidemia (PA) is a rare autosomal recessive organic aciduria resulting from defects in propionyl-CoA-carboxylase (PCC), a key enzyme of intermediate energy metabolism. PA mostly manifests during the neonatal period, when affected newborns develop severe metabolic acidosis and hyperammonemia. We present a previously healthy teenager, who suffered from acute fatigue and breathlessness. The patient was tachycardic, displayed a precordial heave and a systolic murmur. Cardiac investigations revealed severe dilated cardiomyopathy (DCM). Biochemical work up led to the diagnosis of PA. Remarkably, this patient of consanguineous Hispanic origin was in a good general health condition before the acute onset of DCM. Diagnosis of PA was confirmed by enzymatic and molecular genetic analysis, the latter revealing a novel homozygous mutation in the PCCB gene (c.1229G > A; p.R410Q). Residual PCC enzyme activity of approximately 14 % of normal was detected in patient’s lymphocytes and fibroblasts, thereby providing a possible explanation for the hitherto asymptomatic phenotype. Conclusion: Isolated DCM, although rare, can be the leading and/or sole symptom of late-onset PA. Therefore, patients with DCM should receive a comprehensive diagnostic evaluation including selective screening for inborn errors of metabolism

    MTOR regulates endocytosis and nutrient transport in proximal tubular cells

    Get PDF
    Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR–dependent regulatory network for nutrient transport in renal proximal tubular cells
    corecore