23 research outputs found

    CMOS Power Amplifier Design Techniques for UWB Communication: A Review

    Get PDF
    This paper reviews CMOS power amplifier (PA) design techniques in favour of ultra-wideband (UWB) application. The PA circuit design is amongst the most difficult delegation in developing the UWB transmitter due to conditions that must be achieved, including high gain, good input and output matching, efficiency, linearity, low group delay and low power consumption. In order to meet these requirements, many researchers came up with different techniques. Among the techniques used are distributed amplifiers, resistive shunt feedback, RLC matching, shuntshunt feedback, inductive source degeneration, current reuse, shunt peaking, and stagger tuning. Therefore, problems and limitation of UWB CMOS PA and circuit topology are reviewed. A number of works on the UWB CMOS PA from the year 2004 to 2016 are reviewed in this paper. In recent developments, UWB CMOS PA are analysed, hence imparting a comparison of performance criteria based on several different topologies

    A Review of CMOS Low Noise Amplifier for UWB System

    Get PDF
    A number of CMOS low noise amplifier (LNA) design for ultra-wideband (UWB) application had been produced with a various topology and techniques from year 2004 to 2016. The performance of LNA such as frequency bandwidth, noise figure, input and output matching and gain depend with the choice of the topology and technique used. Among the techniques introduced are current reuse, common source, resistive feedback, common gate, Chebyshev filter, distributed amplifier, folded cascade and negative feedback. This paper presents the collection of review about design of low noise amplifier used for UWB application in term of topology circuit. Thus, the problem and limitation of the CMOS LNA for UWB application are reviewed. Furthermore, recent developments of CMOS LNAs are examined and a comparison of the performance criteria of various topologies is presented

    A Review of CMOS Low Noise Amplifier for UWB System

    Get PDF

    Development of Finger Clubbing Meter

    Get PDF
    Finger clubbing, also known as drumstick finger, is the medical symptom that is indicated by the development of the sponginess or swelling in the nail beds of nails and toes. The higher grade of clubbing on the patients can be easily identified with the presence of drumstick finger. The existing available measurement device to identify the early stage of clubbing required much time which is impractical for a busy clinic practice. This paper explains the determination of the finger clubbing by using the Digital Index (DI) measurement, which was deployed by implementing and developing the Portable Finger Clubbing Meter hardware and the Microsoft Visual Basic (VB) Graphical User Interface (GUI). Finger circumference values of nail-fold (NF) and distal interphalangeal joint (DIP) of twenty participants were measured using the developed hardware. Data analysis was then performed using the GUI for DI computation, and the presence of finger clubbing could be determined

    A Review of Highly Efficient Class F Power Amplifier Design Technique in Gigahertz Frequencies

    Get PDF
    Highly efficient class F power amplifier (PA) in Gigahertz (GHz) frequencies for wireless application is reviewed in this paper. The study focused on the technique used in designing a class F PA especially at GHz frequencies. Several works on the class F PA with different semiconductor technologies from year 2001 to 2016 are discussed. Recent works on class F PA in wireless applications are examined and a comparison of the PA performances of various techniques is presented. Key performance indicators for high efficiency class F PA include power added efficiency (PAE) and output power (Pout)

    Surface Analysis of Thermally Growth Ge Oxide on Ge(100)

    Get PDF
    The understanding of Ge oxidation is utmost importance in order to form the good quality dielectric/Ge interface in fabricating Ge Metal Oxide Semiconductor Field Effect Transistor (MOSFETs). In addition, the mechanism of Ge oxidation is still under intensive studies. For Silicon oxidation, Deal and Grove Model have been accepted to explain the Si Oxidation mechanism. The purpose of this paper is to report the mechanism of Ge oxidation at two different temperatures, 375 and 490°C and the detail of Ge oxide composition at Ge oxide/Ge interface. After wet chemical cleaning with HCl, the thermal oxidation was performed at temperature 375 and 490°C at atmospheric pressure. The thickness and composition of Ge oxide were measured with spectroscopic ellipsometry and x-ray photoelectron spectroscopy, respectively. It was observed that the n value extracted from a log-log plot of oxidation time versus oxide thickness was dependent on the oxidation temperature. The oxygen-deficient region was formed during thermal oxidation of Ge and the electronic states of suboxide component were observed in the region within 2.3eV above the top valence band. The novelty of this work is to investigate the kinetics oxidation of Ge and evaluate the composition of oxide layer after thermal oxidation that becomes useful information for the development of Ge MOSFETs

    Design of CMOS Power Amplifier with Resistive Feedback and Notch Filter for UWB Systems

    Get PDF
    A CMOS power amplifier (PA) with the implementation of the notch filter designed for ultra-wideband (UWB) systems is presented in this paper. The design is consisted of two stages of amplifier involving source follower and common source topologies with a notch filter and an output matching network. Such design is meant for full band UWB applications that utilize the frequency range within 3.1 GHz to 10.6 GHz with the elimination at 5-6 GHz using 0.18 µm CMOS process. The simulation shows that the proposed PA design achieved 19.25 dB maximum gain with 1.8 V power supply. In this work, the achieved input and output return loss ranging from -8.13 dB to -19.19 dB, and -1.68 dB to -16.03 dB, respectively, through full band frequency
    corecore