43 research outputs found

    Light Regulation of Metabolic Networks in Microbes

    Get PDF
    [EN] Light Regulation of Metabolic Networks inMicrobes Day and night dominate our life and profoundly influence society. We feel the importance of the differences between day and night if we need sleep or if we have a jetlag. Both phenomena are triggered by our circadian clock, which can be influenced by light. Deprivation of light as well as perturbation of the circadian clock leads to severe health problem

    Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Get PDF
    [EN] Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism

    Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light.

    Get PDF
    [EN] Carotene biosynthesis in Phycomyces is photoinducible and carried out by phytoene dehydrogenase (encoded by carB) and a bifunctional enzyme possessing lycopene cyclase and phytoene synthase activities (carRA). A light pulse followed by periods of darkness produced similar biphasic responses in the expression of the carB and carRA genes, indicating their coordinated regulation. Specific binding complexes were formed between the carB-carRA intergenic region and protein extracts from wild type mycelia grown in the dark or 8min after irradiation. These two conditions correspond to the points at which the expression of both genes is minimal, suggesting that these binding complexes are involved in the down-regulation of photocarotenogenesis in Phycomyces. Protein extracts from carotene mutants failed to form the dark retardation complex, suggesting a role of these genes in the regulation of photocarotenogenesis. In contrast, protein extracts from phototropic mutants formed dark retardation complexes identical to that of the wild type.Junta de Castilla y León; Spanish Ministerio de Educación y Ciencia/FEDE

    PTGDR gene expression and response to dexamethasone treatment in an in vitro model

    Get PDF
    [EN]Asthma is a multifactorial pathology influenced by environmental and genetic factors. Glucocorticoid treatment decreases symptoms by regulating genes involved in the inflammatory process through binding to specific DNA sequences. Polymorphisms located in the promoter region of the Prostaglandin D Receptor (PTGDR) gene have been related to asthma. We aimed to analyze the effect of PTGDR promoter haplotypes on gene expression and response to corticosteroid therapy. A549 lung epithelial cells were transfected with vectors carrying four different PTGDR haplotypes (CTCT, CCCC, CCCT and TCCT), and treated with dexamethasone. Different approaches to study the promoter activity (Dual Luciferase Reporter System), gene expression levels (qPCR) and cytokine secretion (Multiplexed Bead-based Flow Cytometric) were used. In addition, in silico analysis was also performed. Cells carrying the TCCT haplotype showed the lowest promoter activity (p-value<0.05) and mRNA expression levels in basal conditions. After dexamethasone treatment, cells carrying the wild-type variant CTCT showed the highest response, and those carrying the TCCT variant the lowest (p-value<0.05) in luciferase assays. Different transcription factor binding patterns were identified in silico. Moreover, differences in cytokine secretion were also found among different promoter haplotypes. Polymorphisms of PTGDR gene influence basal promoter activity and gene expression, as well as the cytokine secretory pattern. Furthermore, an association between these positions and response to corticoid treatment was observed

    Modulation of the Serum Cytokine Expression Pattern in Hymenoptera Allergic Patients Treated with Specific Venom Immunotherapy

    Get PDF
    [EN] Venom immunotherapy (VIT) is an adequate model to explore the immune mechanisms underlying this type of treatment. We have investigated the use of protein arrays to detect variations in the levels of cytokines in patients receiving VIT. In the present study we selected 11 non-atopic patients with systemic reactions after Hymenoptera sting that received VIT during at least three years. In order to evaluate the success of VIT all of them should have tolerated a sting field after VIT. Serum samples were obtained before initiating VIT and after at least three years of successful VIT. We analyzed 42 serum proteins corresponding to a Th1/Th2 panel using protein array methodology. We observed a significant increase of Interleukin 10, Myeloid Macrophage Colony Stimulation Factor, Macrophage Derived Chemokine, Interleukin 1-α, Vascular Endothelial Growing Factor and Stem Cell Factor serum levels after successful VIT. We discuss the usefulness and normalization of this array method to analyze cytokines and other serum proteins. Monitoring these serum cytokines could help to predict the response and to elucidate the mechanisms underlying immunotherapy.Fundación para la Investigación de la Sociedad Española de Alergología e Inmunología Clínic

    Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism.

    Get PDF
    [EN] The fungus Phycomyces blakesleeanus reacts to environmental signals, including light, gravity, touch, and the presence of nearby objects, by changing the speed and direction of growth of its fruiting body (sporangiophore). Phototropism, growth toward light, shares many features in fungi and plants but the molecular mechanisms remain to be fully elucidated. Phycomyces mutants with altered phototropism were isolated approximately 40 years ago and found to have mutations in the mad genes. All of the responses to light in Phycomyces require the products of the madA and madB genes. We showed that madA encodes a protein similar to the Neurospora blue-light photoreceptor, zinc-finger protein WC-1. We show here that madB encodes a protein similar to the Neurospora zinc-finger protein WC-2. MADA and MADB interact to form a complex in yeast 2-hybrid assays and when coexpressed in E. coli, providing evidence that phototropism and other responses to light are mediated by a photoresponsive transcription factor complex. The Phycomyces genome contains 3 genes similar to wc-1, and 4 genes similar to wc-2, many of which are regulated by light in a madA or madB dependent manner. We did not detect any interactions between additional WC proteins in yeast 2-hybrid assays, which suggest that MADA and MADB form the major photoreceptor complex in Phycomyces. However, the presence of multiple wc genes in Phycomyces may enable perception across a broad range of light intensities, and may provide specialized photoreceptors for distinct photoresponses.European funds (ERDF); Junta de Castilla y León; Junta de Andalucí

    PTGDR expression is upregulated through retinoic acid receptors (RAR) mechanism in allergy

    Get PDF
    [EN] Functional studies suggest that promoter polymorphisms of the Prostaglandin D Receptor (PTGDR) gene can be involved in asthma. All-trans Retinoic acid (ATRA) has also been linked to allergic diseases. We have previously described the PTGDR promoter activation mediated by ATRA through response elements (RARE) at position -549T> C. In this study we aimed to analyze the effect of retinoic acid (RA) on the expression of PTGDR, the production of cytokines as well as to evaluate the binding of RA receptors to RA-Response Elements (RARE) sequences. A549 cells were transfected with vectors carrying different PTGDR haplotypes and treated with all-Trans Retinoic Acid (ATRA). PTGDR expression was measured by qPCR. Chromatin Immunoprecipitation assays (ChIP) were performed in ATRA stimulated KU812 cells and in PBMCs of patients carrying CTCT, CCCC or CCCT haplotypes. In addition, a broad panel of cytokines was analyzed by cytometric bead assay in A549 cells. The expression of PTGDR increased in A549 cells transfected with PTGDR-variants. The CCCC haplotype showed a significantly higher expression compared with CTCT. However, we found that RA up-regulated PTGDR expression through RARα mainly in the CTCT variant. Experiments on PBMCs from allergic patients carrying the -549T and -549C variant of the PTGDR promoter after ATRA and RAR antagonist administration confirmed the modulation of PTGDR by ATRA. The cytokine analysis showed that IL4 and IL6 levels were significantly increased in A549 cells transfected with PTGDR. In addition, ATRA treatment decreased the levels of IL4, IL6 and TNFα in A549 cells, whereas it increased IL4 and TNFα levels in PTGDR-transfected cells. We observed genetic differences in the regulation of PTGDR by ATRA that could contribute to the phenotypic differences observed in allergic patients. Our findings showed that RAR modulation by PTGDR might have an impact on Th2 responses, suggesting that RAR could be a potential therapeutic target in allergic inflammation.Instituto de Salud Carlos III (ISCIII); Fondo Europeo de Desarrollo Regional-FEDER; Consejería de Salud-Junta de Castilla y Leó

    Pharmacogenetics and the Treatment of Asthma

    Get PDF
    [EN] Heterogeneity defines both the natural history of asthma as well as patient's response to treatment. Pharmacogenomics contribute to understand the genetic basis of drug response and thus to define new therapeutic targets or molecular biomarkers to evaluate treatment effectiveness. This review is initially focused on different genes so far involved in the pharmacological response to asthma treatment. Specific considerations regarding allergic asthma, the pharmacogenetics aspects of polypharmacy and the application of pharmacogenomics in new drugs in asthma will also be addressed. Finally, future perspectives related to epigenetic regulatory elements and the potential impact of systems biology in pharmacogenetics of asthma will be considered
    corecore