152 research outputs found

    Stretched Exponential Relaxation of Glasses at Low Temperature

    Full text link
    The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β=3/5\beta = 3/5, as predicted by Phillips' diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but is rather a manifestation of the mixed alkali effect

    Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro- scales.

    Get PDF
    The Cl--induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl--free, and Cl--enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl- ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments

    Direct Experimental Evidence for Differing Reactivity Alterations of Minerals following Irradiation: The Case of Calcite and Quartz

    Get PDF
    Concrete, a mixture formed by mixing cement, water, and fine and coarse mineral aggregates is used in the construction of nuclear power plants (NPPs), e.g., to construct the reactor cavity concrete that encases the reactor pressure vessel, etc. In such environments, concrete may be exposed to radiation (e.g., neutrons) emanating from the reactor core. Until recently, concrete has been assumed relatively immune to radiation exposure. Direct evidence acquired on Ar+^+-ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. Specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, i.e., similar to glassy silica, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%, and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica; i.e., an increase of around 3 orders of magnitude. Calcite however, shows little change in dissolution rates - although its density noted to reduce by around 9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral's atomic network that is characterized by the number of topological constraints (nc_c) that are imposed on the atoms in the network. The outcomes are discussed within the context of the durability of concrete structural elements formed with calcitic/quartzitic aggregates in nuclear power plants

    C-(N)-S-H and N-A-S-H gels: Compositions and solubility data at 25°C and 50°C

    Get PDF
    Abstract Calcium silicate hydrates containing sodium [C–(N)–S–H], and sodium aluminosilicate hydrates [N–A–S–H] are the dominant reaction products that are formed following reaction between a solid aluminosilicate precursor (eg, slags, fly ash, metakaolin) and an alkaline activation agent (eg NaOH) in the presence of water. To gain insights into the thermochemical properties of such compounds, C–(N)– S–H and N–A–S–H gels were synthesized with compositions: 0.8≤Ca/Si≤1.2 for the former, and 0.25≤Al/Si≤0.50 (atomic units) for the latter. The gels were characterized using thermogravimetric analysis (TGA), scanning electron microscopy with energydispersive X-ray microanalysis (SEM-EDS), and X-ray diffraction (XRD). The solubility products (KS0) of the gels were established at 25°C and 50°C. Selfconsistent solubility data of this nature are key inputs required for calculation of mass and volume balances in alkali-activated binders (AABs), and to determine the impacts of the precursor chemistry on the hydrated phase distributions; in which, C–(N)–S–H and N–A–S–H compounds dominate the hydrated phase assemblages. KEYWORDS calcium silicate hydrate, cements, geopolymers, solubility, thermodynamic

    Microstructure-guided numerical simulations to predict the thermal performance of a hierarchical cement-based composite material

    Get PDF
    This paper presents a microstructure-guided numerical homogenization technique to predict the effective thermal conductivity of a hierarchical cement-based material containing phase change material (PCM)-impregnated lightweight aggregates (LWA). Porous inclusions such as LWAs embedded in a cementitious matrix are filled with multiple fluid phases including PCM to obtain desirable thermal properties for building and infrastructure applications. Simulations are carried out on realistic three-dimensional microstructures generated using pore structure information. An inverse analysis procedure is used to extract the intrinsic thermal properties of those microstructural components for which data is not available. The homogenized heat flux is predicted for an imposed temperature gradient from which the effective composite thermal conductivity is computed. The simulated effective composite thermal conductivities are found to correlate very well with experimental measurements for a family of LWA-PCM composites considered in the paper. Comparisons with commonly used analytical homogenization models show that the microstructure-guided simulation approach provides superior results for composites exhibiting large property contrast between phases. By linking the microstructure and thermal properties of hierarchical materials, an efficient framework is available for optimizing the material design to improve thermal efficiency of a wide variety of heterogeneous materials
    • …
    corecore