224 research outputs found
Numerical study of the current sheet and PSBL in a magnetotail model
The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis
The phase plane of moving discrete breathers
We study anharmonic localization in a periodic five atom chain with
quadratic-quartic spring potential. We use discrete symmetries to eliminate the
degeneracies of the harmonic chain and easily find periodic orbits. We apply
linear stability analysis to measure the frequency of phonon-like disturbances
in the presence of breathers and to analyze the instabilities of breathers. We
visualize the phase plane of breather motion directly and develop a technique
for exciting pinned and moving breathers. We observe long-lived breathers that
move chaotically and a global transition to chaos that prevents forming moving
breathers at high energies.Comment: 8 pages text, 4 figures, submitted to Physical Review Letters. See
http://www.msc.cornell.edu/~houle/localization
Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices
Discrete breathers are time-periodic, spatially localized solutions of
equations of motion for classical degrees of freedom interacting on a lattice.
They come in one-parameter families. We report on studies of energy properties
of breather families in one-, two- and three-dimensional lattices. We show that
breather energies have a positive lower bound if the lattice dimension of a
given nonlinear lattice is greater than or equal to a certain critical value.
These findings could be important for the experimental detection of discrete
breathers.Comment: 10 pages, LaTeX, 4 figures (ps), Physical Review Letters, in prin
On modulational instability and energy localization in anharmonic lattices at finite energy density
The localization of vibrational energy, induced by the modulational
instability of the Brillouin-zone-boundary mode in a chain of classical
anharmonic oscillators with finite initial energy density, is studied within a
continuum theory. We describe the initial localization stage as a gas of
envelope solitons and explain their merging, eventually leading to a single
localized object containing a macroscopic fraction of the total energy of the
lattice. The initial-energy-density dependences of all characteristic time
scales of the soliton formation and merging are described analytically. Spatial
power spectra are computed and used for the quantitative explanation of the
numerical results.Comment: 12 pages, 7 figure
On the Existence of Localized Excitations in Nonlinear Hamiltonian Lattices
We consider time-periodic nonlinear localized excitations (NLEs) on
one-dimensional translationally invariant Hamiltonian lattices with arbitrary
finite interaction range and arbitrary finite number of degrees of freedom per
unit cell. We analyse a mapping of the Fourier coefficients of the NLE
solution. NLEs correspond to homoclinic points in the phase space of this map.
Using dimensionality properties of separatrix manifolds of the mapping we show
the persistence of NLE solutions under perturbations of the system, provided
NLEs exist for the given system. For a class of nonintegrable Fermi-Pasta-Ulam
chains we rigorously prove the existence of NLE solutions.Comment: 13 pages, LaTeX, 2 figures will be mailed upon request (Phys. Rev. E,
in press
Precision medicine for suicidality: from universality to subtypes and personalization
Suicide remains a clear, present and increasing public health problem, despite being a potentially preventable tragedy. Its incidence is particularly high in people with overt or un(der)diagnosed psychiatric disorders. Objective and precise identification of individuals at risk, ways of monitoring response to treatments and novel preventive therapeutics need to be discovered, employed and widely deployed. We sought to investigate whether blood gene expression biomarkers for suicide (that is, a ‘liquid biopsy’ approach) can be identified that are more universal in nature, working across psychiatric diagnoses and genders, using larger cohorts than in previous studies. Such markers may reflect and/or be a proxy for the core biology of suicide. We were successful in this endeavor, using a comprehensive stepwise approach, leading to a wealth of findings. Steps 1, 2 and 3 were discovery, prioritization and validation for tracking suicidality, resulting in a Top Dozen list of candidate biomarkers comprising the top biomarkers from each step, as well as a larger list of 148 candidate biomarkers that survived Bonferroni correction in the validation step. Step 4 was testing the Top Dozen list and Bonferroni biomarker list for predictive ability for suicidal ideation (SI) and for future hospitalizations for suicidality in independent cohorts, leading to the identification of completely novel predictive biomarkers (such as CLN5 and AK2), as well as reinforcement of ours and others previous findings in the field (such as SLC4A4 and SKA2). Additionally, we examined whether subtypes of suicidality can be identified based on mental state at the time of high SI and identified four potential subtypes: high anxiety, low mood, combined and non-affective (psychotic). Such subtypes may delineate groups of individuals that are more homogenous in terms of suicidality biology and behavior. We also studied a more personalized approach, by psychiatric diagnosis and gender, with a focus on bipolar males, the highest risk group. Such a personalized approach may be more sensitive to gender differences and to the impact of psychiatric co-morbidities and medications. We compared testing the universal biomarkers in everybody versus testing by subtypes versus personalized by gender and diagnosis, and show that the subtype and personalized approaches permit enhanced precision of predictions for different universal biomarkers. In particular, LHFP appears to be a strong predictor for suicidality in males with depression. We also directly examined whether biomarkers discovered using male bipolars only are better predictors in a male bipolar independent cohort than universal biomarkers and show evidence for a possible advantage of personalization. We identified completely novel biomarkers (such as SPTBN1 and C7orf73), and reinforced previously known biomarkers (such as PTEN and SAT1). For diagnostic ability testing purposes, we also examined as predictors phenotypic measures as apps (for suicide risk (CFI-S, Convergent Functional Information for Suicidality) and for anxiety and mood (SASS, Simplified Affective State Scale)) by themselves, as well as in combination with the top biomarkers (the combination being our a priori primary endpoint), to provide context and enhance precision of predictions. We obtained area under the curves of 90% for SI and 77% for future hospitalizations in independent cohorts. Step 5 was to look for mechanistic understanding, starting with examining evidence for the Top Dozen and Bonferroni biomarkers for involvement in other psychiatric and non-psychiatric disorders, as a mechanism for biological predisposition and vulnerability. The biomarkers we identified also provide a window towards understanding the biology of suicide, implicating biological pathways related to neurogenesis, programmed cell death and insulin signaling from the universal biomarkers, as well as mTOR signaling from the male bipolar biomarkers. In particular, HTR2A increase coupled with ARRB1 and GSK3B decreases in expression in suicidality may provide a synergistic mechanistical corrective target, as do SLC4A4 increase coupled with AHCYL1 and AHCYL2 decrease. Step 6 was to move beyond diagnostics and mechanistical risk assessment, towards providing a foundation for personalized therapeutics. Items scored positive in the CFI-S and subtypes identified by SASS in different individuals provide targets for personalized (psycho)therapy. Some individual biomarkers are targets of existing drugs used to treat mood disorders and suicidality (lithium, clozapine and omega-3 fatty acids), providing a means toward pharmacogenomics stratification of patients and monitoring of response to treatment. Such biomarkers merit evaluation in clinical trials. Bioinformatics drug repurposing analyses with the gene expression biosignatures of the Top Dozen and Bonferroni-validated universal biomarkers identified novel potential therapeutics for suicidality, such as ebselen (a lithium mimetic), piracetam (a nootropic), chlorogenic acid (a polyphenol) and metformin (an antidiabetic and possible longevity promoting drug). Finally, based on the totality of our data and of the evidence in the field to date, a convergent functional evidence score prioritizing biomarkers that have all around evidence (track suicidality, predict it, are reflective of biological predisposition and are potential drug targets) brought to the fore APOE and IL6 from among the universal biomarkers, suggesting an inflammatory/accelerated aging component that may be a targetable common denominator
Stepwise quantum decay of self-localized solitons
The two-phonon decay of self-localized soliton in a one-dimensional monatomic
anharmonic lattice caused by cubic anharmonicity is considered. It is shown
that the decay takes place with emission of phonon bursts. The average rate of
emission of phonons is of the order of vibrational quantum per vibrational
period. Characteristic time of the relaxation is determined by the quantum
anharmonicity parameter; this time may vary from a few (quantum lattices, large
anharmonicity) to thousands (ordinary lattices, small anharmonicity) of
vibrational periods.Comment: 6 pages, 3 figure
Pattern formation and localization in the forced-damped FPU lattice
We study spatial pattern formation and energy localization in the dynamics of
an anharmonic chain with quadratic and quartic intersite potential subject to
an optical, sinusoidally oscillating field and a weak damping. The
zone-boundary mode is stable and locked to the driving field below a critical
forcing that we determine analytically using an approximate model which
describes mode interactions. Above such a forcing, a standing modulated wave
forms for driving frequencies below the band-edge, while a ``multibreather''
state develops at higher frequencies. Of the former, we give an explicit
approximate analytical expression which compares well with numerical data. At
higher forcing space-time chaotic patterns are observed.Comment: submitted to Phys.Rev.
Generation of Intrinsic Vibrational Gap Modes in Three-Dimensional Ionic Crystals
The existence of anharmonic localization of lattice vibrations in a perfect
3-D diatomic ionic crystal is established for the rigid-ion model by molecular
dynamics simulations. For a realistic set of NaI potential parameters, an
intrinsic localized gap mode vibrating in the [111] direction is observed for
fcc and zinc blende lattices. An axial elastic distortion is an integral
feature of this mode which forms more readily for the zinc blende than for the
fcc structure. Molecular dynamics simulations verify that in each structure
this localized mode may be stable for at least 200 cycles.Comment: 5 pages, 4 figures, RevTeX, using epsf.sty. To be published in Phys.
Rev. B. Also available at http://www.msc.cornell.edu/~kiselev
Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials
Using an efficient optimal control scheme to determine the exciting fields,
we theoretically demonstrate the optical creation of vibrational intrinsic
localized modes (ILMs) in anharmonic perfect lattices with realistic
interatomic potentials. For systems with finite size, we show that ILMs can be
excited directly by applying a sequence of femtosecond visible laser pulses at
THz repetition rates. For periodic lattices, ILMs can be created indirectly via
decay of an unstable extended lattice mode which is excited optically either by
a sequence of pulses as described above or by a single picosecond far-infrared
laser pulse with linearly chirped frequency. In light of recent advances in
experimental laser pulse shaping capabilities, the approach is experimentally
promising.Comment: 20 pages, 7 eps figures. Accepted, Phys. Rev.
- …