93 research outputs found

    Ternary configuration in the framework of inverse mean-field method

    Get PDF
    A static scission configuration in cold ternary fission has been considered in the framework of mean field approach. The inverse scattering method is applied to solve single-particle Schroedinger equation, instead of constrained selfconsistent Hartree-Fock equations. It is shown, that it is possible to simulate one-dimensional three-center system via inverse scattering method in the approximation of reflectless single-particle potentials.Comment: 8 pages, 1 figure, iopart.cls, to be published in Int.J.Mod.Phys.

    Decoherence in QED at finite temperature

    Full text link
    We consider a wave packet of a charged particle passing through a cavity filled with photons at temperature T and investigate its localization and interference properties. It is shown that the wave packet becomes localized and the interference disappears with an exponential speed after a sufficiently long path through the cavity.Comment: Latex, 10 page

    Temperature dependent BCS equations with continuum coupling

    Get PDF
    The temperature dependent BCS equations are modified in order to include the contribution of the continuum single particle states. The influence of the continuum upon the critical temperature corresponding to the phase transition from a superfluid to a normal state and upon the behaviour of the excitation energy and of the entropy is discussed.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Generalized seniority scheme in light Sn isotopes

    Get PDF
    The yrast generalized seniority states are compared with the corresponding shell model states for the case of the Sn isotopes 104112^{104-112}Sn. For most of the cases the energies agree within 100 keV and the overlaps of the wave functions are greater than 0.7.Comment: 8 pages, revtex. Submitted to Phys. Rev.

    Alpha-decay chains of 173288115^{288}_{173}115 and 172287115^{287}_{172}115 in the Relativistic Mean Field theory

    Full text link
    In the recent experiments designed to synthesize the element 115 in the 243^{243}Am+48^{48}Ca reaction at Dubna in Russia, three similar decay chains consisting of five consecutive α\alpha-decays, and another different decay chain of four consecutive α\alpha-decays are detected, and the decay properties of these synthesized nuclei are claimed to be consistent with consecutive α\alpha-decays originating from the parent isotopes of the new element 115, 288115^{288}115 and 287115^{287}115, respectively\cite{ogan.03}. Here in the present work, the recently developed deformed RMF+BCS method with a density-independent delta-function interaction in the pairing channel is applied to the analysis of these newly synthesized superheavy nuclei 288115^{288}115, 287115^{287}115, and their α\alpha-decay daughter nuclei. The calculated α\alpha-decay energies and half-lives agree well with the experimental values and with those of the macroscopic-microscopic FRDM+FY and YPE+WS models. In the mean field Lagrangian, the TMA parameter set is used. Particular emphasis is paid on the influence to both the ground-state properties and energy surfaces introduced by different treatments of pairing. Two different effective interactions in the particle-particle channel, i.e., the constant pairing and the density-independent delta-function interaction, together with the blocking effect are discussed in detail.Comment: 17 pages, 5 figure

    A New Nonlinear Liquid Drop Model. Clusters as Solitons on The Nuclear Surface

    Full text link
    By introducing in the hydrodynamic model, i.e. in the hydrodynamic equations and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equation (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by the ratio of the square amplitudes in the two minima.Comment: 27 pages, LateX, 8 figures, Submitted J. Phys. G: Nucl. Part. Phys., PACS: 23.60.+e, 21.60.Gx, 24.30.-v, 25.70.e

    Robustness of spatial Penning trap modes against environment-assisted entanglement

    Full text link
    The separability of the spatial modes of a charged particle in a Penning trap in the presence of an environment is studied by means of the positive partial transpose (PPT) criterion. Assuming a weak Markovian environment, described by linear Lindblad operators, our results strongly suggest that the environmental coupling of the axial and cyclotron degrees of freedom does not lead to entanglement at experimentally realistic temperatures. We therefore argue that, apart from unavoidable decoherence, the presence of such an environment does not alter the effectiveness of recently suggested quantum information protocols in Penning traps, which are based on the combination of a spatial mode with the spin of the particle.Comment: 11 pages, 2 figure

    Theoretical study of the two-proton halo candidate 17^{17}Ne including contributions from resonant continuum and pairing correlations

    Full text link
    With the relativistic Coulomb wave function boundary condition, the energies, widths and wave functions of the single proton resonant orbitals for 17^{17}Ne are studied by the analytical continuation of the coupling constant (ACCC) approach within the framework of the relativistic mean field (RMF) theory. Pairing correlations and contributions from the single-particle resonant orbitals in the continuum are taken into consideration by the resonant Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is used. It can be seen that the fully self-consistent calculations with NL3 and NLSH effective interactions mostly agree with the latest experimental measurements, such as binding energies, matter radii, charge radii and densities. The energy of π\pi2s1/2_{1/2} orbital is slightly higher than that of π1d5/2\pi1d_{5/2} orbital, and the occupation probability of the (π(\pi2s1/2)2_{1/2})^2 orbital is about 20%, which are in accordance with the shell model calculation and three-body model estimation

    Semiclassical Evolution of Dissipative Markovian Systems

    Full text link
    A semiclassical approximation for an evolving density operator, driven by a "closed" hamiltonian operator and "open" markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra "open" term is added to the double Hamiltonian by the non-hermitian part of the Lindblad operators in the general case of dissipative markovian evolution. The particular case of generic hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighborhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further "small-chord" approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.Comment: 33 pages - accepted to J. Phys.

    Decoherence and thermalization dynamics of a quantum oscillator

    Get PDF
    We introduce the quantitative measures characterizing the rates of decoherence and thermalization of quantum systems. We study the time evolution of these measures in the case of a quantum harmonic oscillator whose relaxation is described in the framework of the standard master equation, for various initial states (coherent, `cat', squeezed and number). We establish the conditions under which the true decoherence measure can be approximated by the linear entropy 1Trρ^21-{Tr}\hat\rho^2. We show that at low temperatures and for highly excited initial states the decoherence process consists of three distinct stages with quite different time scales. In particular, the `cat' states preserve 50% of the initial coherence for a long time interval which increases logarithmically with increase of the initial energy.Comment: 24 pages, LaTex, 8 ps figures, accepted for publication in J. Opt.
    corecore