6 research outputs found

    TEM investigation of MoSeC films

    Get PDF
    Transition metal dichalcogenides (TMD) are widely used as self-lubricating material either as oil additive or directly as thin films. Magnetron sputtering is a deposition method allowing depositing such films with high density and adhesion. However, their spread use in practical applications is still hindered since their excellent sliding properties are deteriorated in the presence of humidity and under high contact pressures. MoSe2, one of the members of TMD family recently studied, has been co-sputtered with carbon in order to improve the mechanical and tribological properties when compared to pure MoSe2 film

    TEM investigation of MoSeC films

    No full text
    Transition metal dichalcogenides (TMD) are widely used as self-lubricating material either as oil additive or directly as thin films. Magnetron sputtering is a deposition method allowing depositing such films with high density and adhesion. However, their spread use in practical applications is still hindered since their excellent sliding properties are deteriorated in the presence of humidity and under high contact pressures. MoSe2, one of the members of TMD family recently studied, has been co-sputtered with carbon in order to improve the mechanical and tribological properties when compared to pure MoSe2 film

    Effect of substrate roughness on c-oriented AlN thin films

    No full text
    (001)-textured AlN thin films as needed for bulk acoustic wave devices exhibit large mechanical stress variations as a function of growth substrate properties. We studied the relationship between stress and the surface morphology of a thermally oxidized silicon substrate that was modified by a thin amorphous silicon layer. A rms roughness of 0.1–1.1 nm of the latter resulted in an increase in mechanical stress in the subsequently sputtered AlN thin film going from −700 to +200 MPa. At the same time, the x-ray rocking curve width of AlN increased from 1.3° to 2.3°. The roughness of the Si interlayer was controlled by the Ar sputter pressure. Interestingly, the maximal roughness is obtained at an intermediate pressure. This is explained by an interplay of nucleation and diffusion phenomena governed by the kinetics of impinging atoms and ions. The Si interlayer was essential to avoid cracking of membranes exhibiting mixed Pt and SiO2 surfaces below the AlN film

    Nanoscale triboactivity: the response of Mo–Se–C coatings to sliding

    No full text
    Mo–Se–C films were deposited by sputtering from a carbon target with pellets of MoSe2. In addition to the standard evaluation of their chemical composition, structure, morphology, hardness and cohesion/adhesion, the core objective of this paper was to analyze the tribological behavior of these films, particularly in the high-load regime. The carbon content varied from 29 to 68 at.% which led to a progressive increase of the Se/Mo ratio and the hardness. The friction coefficient of Mo–Se–C coatings clearly decreased with load from ?0.15 to ?0.05. The excellent friction properties were attributed to the formation of a thin molybdenum diselenide film on the top of the wear track of the coating and on the counterpart surface, while the role of the carbon in the sliding process is only secondary by increasing the coating hardness and thus its wear resistance.<br/

    Properties of nanocomposite film combining hard TiN matrix with embedded fullerene-like WS2 nanoclusters

    No full text
    We have developed hard self-lubricant coatings combining a hard matrix (TiN) and a self-lubricant phase in the form of inorganic-like WS2 fullerene. The nanoparticles were injected from the preparation chamber directly to the sample surface during reactive sputtering from a Ti target in Ar/N2 atmosphere. The injection of the particles led to the local oxidation of the matrix due to the flow of residual oxygen from the preparation chamber; therefore, the final composite was TiN/Ti–O–WS2. The observation of the composite film by scanning and transmission electron microscopies showed the incorporation of the WS2 nanoparticles; however, their bonding with the matrix was weak. The analysis of the wear tracks did not show any presence of WS2 in the contact

    Research and Science Today Supplement 2/2014

    No full text
    corecore