1,351 research outputs found

    Applications of Drone Technology with BIM to Increase Productivity

    Get PDF
    This paper looks directly at BIM and Drone Technology in today\u27s age and how their integrative capabilities with one another can result in a highly productive construction atmosphere. There is an abundance of research for the topic, but no real-life examples. Webcor will serve as this example via case study. The research methodology for the project will come from interviews and a questionnaire featuring a project manager, superintendent, licensed flyer, BIM engineer, and cost estimator. The variety of interviews, will showcase the effects drone technology and BIM have on different sectors of a business. Themes that come out of these interviews include, hardware, software, surveying, safety, and financial impact. These results prove that drone technology is a relatively new industry with great common applications. This paper focuses on major techniques companies can use to further integrate drones with BIM to increase productivity

    Shopping for Homes and Schools: A Qualitative Study of West Hartford, Connecticut

    Get PDF
    This qualitative study explores how access to public schooling is bought and sold in the real estate market in West Hartford, Connecticut, based on interviews with recent homebuyers

    A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition

    Get PDF
    Kaposi's sarcoma-associated herpesvirus encodes two transmembrane proteins (modulator of immune recognition [MIR]1 and MIR2) that downregulate cell surface molecules (MHC-I, B7.2, and ICAM-1) involved in the immune recognition of infected cells. This downregulation results from enhanced endocytosis and subsequent endolysosomal degradation of the target proteins. Here, we show that expression of MIR1 and MIR2 leads to ubiquitination of the cytosolic tail of their target proteins and that ubiquitination is essential for their removal from the cell surface. MIR1 and MIR2 both contain cytosolic zinc fingers of the PHD subfamily, and these structures are required for this activity. In vitro, addition of a MIR2–glutathione S-transferase (GST) fusion protein to purified E1 and E2 enzymes leads to transfer of ubiquitin (Ub) to GST-containing targets in an ATP- and E2-dependent fashion; this reaction is abolished by mutation of the Zn-coordinating residues of the PHD domain. Thus, MIR2 defines a novel class of membrane-bound E3 Ub ligases that modulates the trafficking of host cell membrane proteins

    Cascade search for HSV-1 combinatorial drugs with high antiviral efficacy and low toxicity

    Get PDF
    BackgroundInfectious diseases cause many molecular assemblies and pathways within cellular signaling networks to function aberrantly. The most effective way to treat complex, diseased cellular networks is to apply multiple drugs that attack the problem from many fronts. However, determining the optimal combination of several drugs at specific dosages to reach an endpoint objective is a daunting task.MethodsIn this study, we applied an experimental feedback system control (FSC) method and rapidly identified optimal drug combinations that inhibit herpes simplex virus-1 infection, by only testing less than 0.1% of the total possible drug combinations.ResultsUsing antiviral efficacy as the criterion, FSC quickly identified a highly efficacious drug cocktail. This cocktail contained high dose ribavirin. Ribavirin, while being an effective antiviral drug, often induces toxic side effects that are not desirable in a therapeutic drug combination. To screen for less toxic drug combinations, we applied a second FSC search in cascade and used both high antiviral efficacy and low toxicity as criteria. Surprisingly, the new drug combination eliminated the need for ribavirin, but still blocked viral infection in nearly 100% of cases.ConclusionThis cascade search provides a versatile platform for rapid discovery of new drug combinations that satisfy multiple criteria

    Effect of Field-Line Curvature on the Ionospheric Accessibility of Relativistic Electron Beam Experiments

    Get PDF
    Magnetosphere-ionosphere coupling is a particularly important process that regulates and controls magnetospheric dynamics such as storms and substorms. However, in order to understand magnetosphere-ionosphere coupling it is necessary to understand how regions of the magnetosphere are connected to the ionosphere. It has been proposed that this connection may be established by firing electron beams from satellites that can reach an ionospheric footpoint creating detectable emissions. This type of experiment would greatly aid in identifying the relationship between convection processes in the magnetotail and the ionosphere and how the plasma sheet current layer evolves during the growth phase preceding substorms. For practical purposes, the use of relativistic electron beams with kinetic energy on the order of 1 MeV would be ideal for detectability. However, Porazik et al. (2014) has shown that, for relativistic particles, higher order terms of the magnetic moment are necessary for consideration of the ionospheric accessibility of the beams. These higher order terms are related to gradients and curvature in the magnetic field and are typically unimportant unless the beam is injected along the magnetic field direction, such that the zero order magnetic moment is small. In this article, we address two important consequences related to these higher order terms. First, we investigate the consequences for satellites positioned in regions subject to magnetotail stretching and demonstrate systematically how curvature affects accessibility. We find that curvature can reduce accessibility for beams injected from the current sheet, but can increase accessibility for beams injected just above the current sheet. Second, we investigate how detectability of ionospheric precipitation of variable energy field-aligned electron beams could be used as a constraint on field-line curvature, which would be valuable for field-line reconstruction and/or stability analysis

    Method for Approximating Field-Line Curves Using Ionospheric Observations of Energy-Variable Electron Beams Launched From Satellites

    Get PDF
    Using electron beam accelerators attached to satellites in Earth orbit, it may be possible to measure arc length and curvature of field-lines in the inner magnetosphere if the accelerator is designed with the capability to vary the beam energy. In combination with additional information, these measurements would be very useful in modeling the magnetic field of the inner magnetosphere. For this purpose, a three step data assimilation modeling approach is discussed. The first step in the procedure would be to use prior information to obtain an initial forecast of the inner magnetosphere. Then, a family of curves would be defined that satisfies the observed geometric attributes measured by the experiments, and the prior forecast would then be used to optimize the curve with respect to the allowed degrees of freedom. Finally, this approximation of the field-line would be used to improve the initial forecast of the inner magnetosphere, resulting in a description of the system that is optimally consistent with both the prior information and the measured curvature and arc length. This article details the method by which a family of possible approximations of the field-line may be defined via a numerical procedure, which is central to the three step approach. This method serves effectively as a pre-conditioner for parameter estimation problems using field-line curvature and arc length measurements in combination with other measurements

    Signatures of pressure-enhanced helimagnetic order in van der Waals multiferroic NiI2_2

    Full text link
    The van der Waals (vdW) type-II multiferroic NiI2_2 has emerged as a candidate for exploring non-collinear magnetism and magnetoelectric effects in the 2D limit. Frustrated intralayer exchange interactions on a triangular lattice result in a helimagnetic ground state, with spin-induced improper ferroelectricity stabilized by the interlayer interactions. Here we investigate the magnetic and structural phase transitions in bulk NiI2_2, using high-pressure Raman spectroscopy, optical linear dichroism, and x-ray diffraction. We obtain evidence for a significant pressure enhancement of the antiferromagnetic and helimagnetic transition temperatures, at rates of 15.3/14.4\sim15.3/14.4 K/GPa, respectively. These enhancements are attributed to a cooperative effect of pressure-enhanced interlayer and third-nearest-neighbor intralayer exchange. These results reveal a general path for obtaining high-temperature type-II multiferroicity via high pressures in vdW materials
    corecore