76 research outputs found

    Challenges in predicting stabilizing variations: An exploration

    Get PDF
    An open challenge of computational and experimental biology is understanding the impact of non-synonymous DNA variations on protein function and, subsequently, human health. The effects of these variants on protein stability can be measured as the difference in the free energy of unfolding (ΔΔG) between the mutated structure of the protein and its wild-type form. Throughout the years, bioinformaticians have developed a wide variety of tools and approaches to predict the ΔΔG. Although the performance of these tools is highly variable, overall they are less accurate in predicting ΔΔG stabilizing variations rather than the destabilizing ones. Here, we analyze the possible reasons for this difference by focusing on the relationship between experimentally-measured ΔΔG and seven protein properties on three widely-used datasets (S2648, VariBench, Ssym) and a recently introduced one (S669). These properties include protein structural information, different physical properties and statistical potentials. We found that two highly used input features, i.e., hydrophobicity and the Blosum62 substitution matrix, show a performance close to random choice when trying to separate stabilizing variants from either neutral or destabilizing ones. We then speculate that, since destabilizing variations are the most abundant class in the available datasets, the overall performance of the methods is higher when including features that improve the prediction for the destabilizing variants at the expense of the stabilizing ones. These findings highlight the need of designing predictive methods able to exploit also input features highly correlated with the stabilizing variants. New tools should also be tested on a not-artificially balanced dataset, reporting the performance on all the three classes (i.e., stabilizing, neutral and destabilizing variants) and not only the overall results

    Protein Stability Perturbation Contributes to the Loss of Function in Haploinsufficient Genes

    Get PDF
    Missense variants are among the most studied genome modifications as disease biomarkers. It has been shown that the \u201cperturbation\u201d of the protein stability upon a missense variant (in terms of absolute \u394\u394G value, i.e., |\u394\u394G|) has a significant, but not predictive, correlation with the pathogenicity of that variant. However, here we show that this correlation becomes significantly amplified in haploinsufficient genes. Moreover, the enrichment of pathogenic variants increases at the increasing protein stability perturbation value. These findings suggest that protein stability perturbation might be considered as a potential cofactor in diseases associated with haploinsufficient genes reporting missense variants

    Improving biomarker list stability by integration of biological knowledge in the learning process

    Get PDF
    BACKGROUND: The identification of robust lists of molecular biomarkers related to a disease is a fundamental step for early diagnosis and treatment. However, methodologies for biomarker discovery using microarray data often provide results with limited overlap. It has been suggested that one reason for these inconsistencies may be that in complex diseases, such as cancer, multiple genes belonging to one or more physiological pathways are associated with the outcomes. Thus, a possible approach to improve list stability is to integrate biological information from genomic databases in the learning process; however, a comprehensive assessment based on different types of biological information is still lacking in the literature. In this work we have compared the effect of using different biological information in the learning process like functional annotations, protein-protein interactions and expression correlation among genes. RESULTS: Biological knowledge has been codified by means of gene similarity matrices and expression data linearly transformed in such a way that the more similar two features are, the more closely they are mapped. Two semantic similarity matrices, based on Biological Process and Molecular Function Gene Ontology annotation, and geodesic distance applied on protein-protein interaction networks, are the best performers in improving list stability maintaining almost equal prediction accuracy. CONCLUSIONS: The performed analysis supports the idea that when some features are strongly correlated to each other, for example because are close in the protein-protein interaction network, then they might have similar importance and are equally relevant for the task at hand. Obtained results can be a starting point for additional experiments on combining similarity matrices in order to obtain even more stable lists of biomarkers. The implementation of the classification algorithm is available at the link: http://www.math.unipd.it/~dasan/biomarkers.html

    Deep learning methods to predict amyotrophic lateral sclerosis disease progression

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a highly complex and heterogeneous neurodegenerative disease that affects motor neurons. Since life expectancy is relatively low, it is essential to promptly understand the course of the disease to better target the patient’s treatment. Predictive models for disease progression are thus of great interest. One of the most extensive and well-studied open-access data resources for ALS is the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) repository. In 2015, the DREAM-Phil Bowen ALS Prediction Prize4Life Challenge was held on PRO-ACT data, where competitors were asked to develop machine learning algorithms to predict disease progression measured through the slope of the ALSFRS score between 3 and 12 months. However, although it has already been successfully applied in several studies on ALS patients, to the best of our knowledge deep learning approaches still remain unexplored on the ALSFRS slope prediction in PRO-ACT cohort. Here, we investigate how deep learning models perform in predicting ALS progression using the PRO-ACT data. We developed three models based on different architectures that showed comparable or better performance with respect to the state-of-the-art models, thus representing a valid alternative to predict ALS disease progression
    corecore