9,645 research outputs found

    Markov two-components processes

    Get PDF
    We propose Markov two-components processes (M2CP) as a probabilistic model of asynchronous systems based on the trace semantics for concurrency. Considering an asynchronous system distributed over two sites, we introduce concepts and tools to manipulate random trajectories in an asynchronous framework: stopping times, an Asynchronous Strong Markov property, recurrent and transient states and irreducible components of asynchronous probabilistic processes. The asynchrony assumption implies that there is no global totally ordered clock ruling the system. Instead, time appears as partially ordered and random. We construct and characterize M2CP through a finite family of transition matrices. M2CP have a local independence property that guarantees that local components are independent in the probabilistic sense, conditionally to their synchronization constraints. A synchronization product of two Markov chains is introduced, as a natural example of M2CP.Comment: 34 page

    A cut-invariant law of large numbers for random heaps

    Full text link
    Heap monoids equipped with Bernoulli measures are a model of probabilistic asynchronous systems. We introduce in this framework the notion of asynchronous stopping time, which is analogous to the notion of stopping time for classical probabilistic processes. A Strong Bernoulli property is proved. A notion of cut-invariance is formulated for convergent ergodic means. Then a version of the Strong law of large numbers is proved for heap monoids with Bernoulli measures. Finally, we study a sub-additive version of the Law of large numbers in this framework based on Kingman sub-additive Ergodic Theorem.Comment: 29 pages, 3 figures, 21 reference

    Markovian dynamics of concurrent systems

    Full text link
    Monoid actions of trace monoids over finite sets are powerful models of concurrent systems---for instance they encompass the class of 1-safe Petri nets. We characterise Markov measures attached to concurrent systems by finitely many parameters with suitable normalisation conditions. These conditions involve polynomials related to the combinatorics of the monoid and of the monoid action. These parameters generalise to concurrent systems the coefficients of the transition matrix of a Markov chain. A natural problem is the existence of the uniform measure for every concurrent system. We prove this existence under an irreducibility condition. The uniform measure of a concurrent system is characterised by a real number, the characteristic root of the action, and a function of pairs of states, the Parry cocyle. A new combinatorial inversion formula allows to identify a polynomial of which the characteristic root is the smallest positive root. Examples based on simple combinatorial tilings are studied.Comment: 35 pages, 6 figures, 33 reference

    On the stochastic calculus method for spins systems

    Full text link
    In this note we show how to generalize the stochastic calculus method introduced by Comets and Neveu [Comm. Math. Phys. 166 (1995) 549-564] for two models of spin glasses, namely, the SK model with external field and the perceptron model. This method allows to derive quite easily some fluctuation results for the free energy in those two cases.Comment: Published at http://dx.doi.org/10.1214/009117904000000919 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic Estimates for Perturbed Scaiar Curvature Equation

    Get PDF
    We have an idea on the influence of a nonlinear term (tending to 0) on the prescribed scalar curvature equation to have an uniform estimate.Comment: 7 page

    Harnack Inequalities for Yamabe Type Equations

    Get PDF
    We give some a priori estimates of type sup*inf for Yamabe and prescribed scalar curvature type equations on Riemannian manifolds of dimension >2. The product sup*inf is caracteristic of those equations, like the usual Harnack inequalities for non negative harmonic functions. First, we have a lower bound for sup*inf for some classes of PDE on compact manifolds (like prescribed scalar cuvature). We also have an upper bound for the same product but on any Riemannian manifold not necessarily compact. An application of those result is an uniqueness solution for some PDE.Comment: 16 page
    • …
    corecore