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ASYMPTOTIC ESTIMATE FOR PERTURBED SCALAR CURVATURE EQUATI ON.

SAMY SKANDER BAHOURA

ABSTRACT. We consider the equation∆uǫ = Vǫuǫ
(n+2)/(n−2)+ǫWǫuǫ

α with α ∈]
n

n − 2
,
n + 2

n − 2
[

and we give some minimal conditions on∇V and∇W to have an uniform estimate for their so-
lutions whenǫ → 0.

1. INTRODUCTION AND RESULTS.

We denote∆ = −
∑

i ∂ii the geometric Laplacian onRn, n ≥ 3.

Let us consider on open setΩ of R
n, n ≥ 3, the following equation:

∆uǫ = Vǫuǫ
(n+2)/(n−2) + ǫWǫuǫ

α (Eǫ)

whereVǫ andWǫ are two regular functions andα ∈]
n

n − 2
,
n + 2

n − 2
[.

We assume:

0 < a ≤ Vǫ(x) ≤ b, ||∇Vǫ||L∞ ≤ A (C1)

0 < c ≤ Wǫ(x) ≤ d, ||∇Wǫ||L∞ ≤ B (C2)

Problem: Can we have ansup× inf estimate with the minimal conditions(C1) and(C2) ?

Note that forW ≡ 0, the equation(Eǫ) is the wellknowen scalar curvature equation on open
set ofRn, n ≥ 3. In this case, there is many results about this equation, seefor example [B] and
[C-L 1].

WhenΩ = Sn YY. Li, give a flatness condition to have the boundedness of the energy and the
existence of the simple blow-up points, see [L1] and [L2].

In [C-L 2], Chen and Lin gave a conterexample of solutions of the scalar curvature equation
with unbounded energy. The conditions of Li are minimal in heigh dimension.

Note that, in [C-L 1] and [C-L 3], there is some results concerning Harnack inequalities of
typesup× inf with the ”Li-flatness” conditions for the following equation:

∆u = V u(n+2)/(n−2) + g(u)

whereg is a regular function ( at leastC1 ) such thatg(t)/[t(n+2)/(n−2)] is deacrising and
tends to 0 whent → +∞. They extend Li result ([L1]) to any open set of the euclidianspace.

We can find in [A], some existence results for the presribed scalar curvature equation.

In our work we have no assumption on the energy. We use the blow-up analysis and the
moving-plane method, developped by Gidas-Ni-Nirenberg, see [ G-N-N]. This method was used
by different authors to have a priori estimates, look for example, [B], [B-L-S] ( in dimension 2),
[C-L 1], [C-L 3], [L 1] and [L 2].

We setδ = [(n + 2) − α(n − 2)]/2, δ ∈]0, 1[. We have:
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Theorem 1. For all a, b, c, d, A, B > 0, for all α ∈]
n

n − 2
,
n + 2

n − 2
[ and all compact set K of

Ω, there is a positive constant c = c(a, b, c, d, A, B, α, K,Ω, n) such that:

ǫ(n−2)/2(1−δ)(sup
K

uǫ)
1/3 × inf

Ω
uǫ ≤ c

for all uǫ solution of (Eǫ) with Vǫ and Wǫ satisfying the conditions (C1) and (C2).

Now, we suppose thatVǫ satisfies:

0 < a ≤ Vǫ(x) ≤ b and ||∇Vǫ||L∞(Ω) ≤ kǫ (C3)

We have:

Theorem 2. For all a, b, c, d, k, B > 0, for all α ∈]
n

n − 2
,
n + 2

n − 2
[ and all compact set K of

Ω, there is a positive constant c = c(a, b, c, d, k, B, α, K,Ω, n) such that:

sup
K

uǫ × inf
Ω

uǫ ≤ c

for all uǫ solution of (Eǫ) with Vǫ and Wǫ satisfying the conditions (C3) and (C2).

Note that in [B], we have some results as the previous but for prescribed scalar curvature
equation with subcritical exponent tending to the critical. Here, we have asup× inf inequality
for the scalar curvature equation, with critical exponent,perturbed by a nonlinear term. We can
see the influence of this non-linear term.

2. PROOFS OF THE THEOREMS.

Proof of the theorem 1.

Without loss of generality, we supposeΩ = B1 the unit ball ofRn. We want to prove an a
priori estimate around 0. We can also supposeǫ → 0, the caseǫ 6→ 0 is solved in [B].

Let (ui) and(Vi) be a sequences of functions onΩ such that:

∆ui = Viui
(n+2)/(n−2) + ǫiWiu

α
i , ui > 0,

with 0 < a ≤ Vi(x) ≤ b, 0 < a ≤ Wi(x) ≤ d, ||Vi||L∞ ≤ A and||Wi||L∞ ≤ B.

We argue by contradiction and we suppose that thesup× inf is not bounded.

We have:

∀ c, R > 0 ∃ uc,R solution of(E1) such that:

ǫ(n−2)/2(1−δ)Rn−2( sup
B(0,R)

uǫ,c,R)1/3 × inf
Ω

uǫ,c,R ≥ c, (H)

Proposition :(blow-up analysis)

There is a sequence of points(yi)i, yi → 0 and two sequences of positive real numbers

(li)i, (Li)i, li → 0, Li → +∞, such that if we setvi(y) =
ui(y + yi)

ui(yi)
, we have:

0 < vi(y) ≤ βi ≤ 2(n−2)/2, βi → 1.

vi(y) →
(

1

1 + |y|2
)(n−2)/2

, uniformly on all compact set of R
n.

l
(n−2)/2
i ǫi

(n−2)/2(1−δ)[ui(yi)]
1/3 × inf

B1

ui → +∞,

Proof of the proposition:

We use the hypothesis(H), we take two sequencesRi > 0, Ri → 0 andci → +∞, such that,
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ǫi
(n−2)/2(1−δ)Ri

(n−2)( sup
B(0,Ri)

ui)
1/3 × inf

B1

ui ≥ ci → +∞,

Let xi ∈ B(x0, Ri) be a point such thatsupB(0,Ri) ui = ui(xi) andsi(x) = (Ri − |x −
xi|)(n−2)/2ui(x), x ∈ B(xi, Ri). Then,xi → 0.

We have:

max
B(xi,Ri)

si(x) = si(yi) ≥ si(xi) = Ri
(n−2)/2ui(xi) ≥

√
ci → +∞.

We set:

li = Ri − |yi − xi|, ūi(y) = ui(yi + y), vi(z) =
ui[yi +

(

z/[ui(yi)]
2/(n−2)

)

]

ui(yi)
.

Clearly we have,yi → x0. We also obtain:

Li =
li

(ci)1/2(n−2)
[ui(yi)]

2/(n−2) =
[si(yi)]

2/(n−2)

c
1/2(n−2)
i

≥ c
1/(n−2)
i

c
1/2(n−2)
i

= c
1/2(n−2)
i → +∞.

If |z| ≤ Li, theny = [yi + z/[ui(yi)]
2/(n−2)] ∈ B(yi, δili) with δi =

1

(ci)1/2(n−2)
and

|y − yi| < Ri − |yi − xi|, thus,|y − xi| < Ri and,si(y) ≤ si(yi). We can write:

ui(y)(Ri − |y − yi|)(n−2)/2 ≤ ui(yi)(li)
(n−2)/2.

But, |y− yi| ≤ δili, Ri > li andRi −|y− yi| ≥ Ri − δili > li − δili = li(1− δi). We obtain,

0 < vi(z) =
ui(y)

ui(yi)
≤

[

li
li(1 − δi)

](n−2)/2

≤ 2(n−2)/2.

We set,βi =

(

1

1 − δi

)(n−2)/2

, clearly, we have,βi → 1.

The functionvi satisfies:

∆vi = Ṽivi
(n+2)/(n−2) + ǫiW̃i

v
n/(n−2)
i

[ui(yi)][(n+2)/(n−2)]−α

where,Ṽi(y) = Vi

[

y + y/[ui(yi)]
2/(n−2)

]

andW̃i(y) = Wi

[

y + y/[ui(yi)]
2/(n−2)

]

.

Without loss of generality, we can suppose thatṼi → V (0) = n(n − 2).

We use the elliptic estimates, Ascoli and Ladyzenskaya theorems to have the uniform conver-
gence of(vi) to v on compact set ofRn. The functionv satisfies:

∆v = n(n − 2)vN−1, v(0) = 1, 0 ≤ v ≤ 1 ≤ 2(n−2)/2,

By the maximum principle, we havev > 0 onR
n. If we use Caffarelli-Gidas-Spruck result, (

see [C-G-S]), we obtain,v(y) =

(

1

1 + |y|2
)(n−2)/2

. We have the same properties that in [B].

Polar Coordinates(Moving-Plane method)

Now, we must use the same method than in the Theorem 1 of [B]. Wewill use the moving-
plane method.

We must prove the lemma 2 of [B].

We sett ∈] −∞,− log 2] andθ ∈ Sn−1 :
3



wi(t, θ) = e(n−2)t/2ui(yi + etθ), V̄i(t, θ) = Vi(yi + etθ) and W̄i(t, θ) = Wi(yi + etθ).

We consider the following operatorL = ∂tt −∆σ − (n − 2)2

4
, with ∆σ the Laplace-Baltrami

operator onSn−1.

The functionwi is solution of:

−Lwi = V̄iwi
N−1 + ǫie

[(n+2)−(n−2)α]t/2W̄iwi
α.

Forλ ≤ 0 we set :

tλ = 2λ − t wλ
i (t, θ) = wi(t

λ, θ), V̄ λ
i (t, θ) = V̄i(t

λ, θ) etW̄λ
i (t, θ) = W̄i(t

λ, θ).

Remark: Here we work on[λ, ti]× Sn−1, with λ ≤ − 2

n − 2
log ui(yi) + 2 andti ≤ log

√
li,

whereli is chooses as in the proposition.

First, like in [B], we have the following lemma:

Lemma 1:

Let Aλ be the following property:

Aλ = {λ ≤ 0, ∃ (tλ, θλ) ∈]λ, ti] × Sn−1, w̄λ
i (tλ, θλ) − w̄i(tλ, θλ) ≥ 0}.

Then, there isν ≤ 0, such that forλ ≤ ν, Aλ is not true.

Like in the proof of the Theorem 1 of [B], we want to prove the following lemma:
Lemma 2:

Forλ ≤ 0 we have :

wi
λ − wi ≤ 0 ⇒ −L(wi

λ − wi) ≤ 0,

on ]λ, ti] × Sn−1.

Like in [B], we have:

A useful point:

ξi = sup{λ ≤ λ̄i = 2 + log ηi, wi
λ − wi < 0, on ]λ, ti] × Sn−1}. The realξi exists.

First, we have:

wi(2ξi − t, θ) = wi[(ξi − t + ξi − log ηi − 2) + (log ηi + 2)],

the definition ofwi and the fact that,ξi ≤ t, we obtain:

wi(2ξi−t, θ) = e[(n−2)(ξi−t+ξi−log ηi−2)]/2en−2vi[θe
2e(ξi−t)+(ξi−log ηi−2)] ≤ 2(n−2)/2en−2 = c̄.

Proof of the Lemma 2:

We know that:

−L(wξi

i − wi) = [V̄ ξi

i (wξi

i )N−1 − V̄iwi
N−1] + ǫi[e

δtξi
W̄ ξi

i (wξi

i )α − eδtW̄iwi
α],

with δ = [(n + 2) − (n − 2)α]/2.

We denote byZ1 andZ2 the following terms:

Z1 = (V̄ ξi

i − V̄i)(w
ξi

i )N−1 + V̄i[(w
ξi

i )N−1 − wi
N−1],

and
4



Z2 = ǫi(W̄
ξi

i − W̄i)(w
ξi

i )αeδtξi
+ ǫie

δtξi
W̄i[(w

ξi

i )α − wi
α] + ǫiW̄iwi

α(eδtξi − eδt).

But, using the same method as in the proof of the theorem 1 of [B], we have:

wi
ξi ≤ wi et wξi

i (t, θ) ≤ c̄ pour tout (t, θ) ∈ [ξi, log 2] × Sn−1,

wherec̄ is a positive constantnot depending oni for ξi ≤ log ηi + 2;

|V̄ ξi

i − V̄i| ≤ A(et − etξi
) et |W̄ ξi

i − W̄i| ≤ B(et − etξi
),

Then,

Z1 ≤ A (wξi

i )N−1 (et − etξi
) et Z2 ≤ ǫiB ((wξi

i )
α

(et − etξi
) + ǫic (wξi

i )
α × (eδtξi − eδt).

and,

−L(wξi

i − wi) ≤ (wξi

i )α[(Awξi

i

N−1−α
+ ǫiB) (et − etξi

) + ǫic (eδtξi − eδt)].

But, wξi

i ≤ c̄, we obtain:

−L(wξi

i − wi) ≤ (wξi

i )α[(Ac̄N−1−α + ǫiB) (et − etξi
) + ǫic (eδtξi − eδt)]. (1)

We must see the sign of:

Z̄ = [(Ac̄N−1−α + ǫiB) (et − etξi
) + ǫic (eδtξi − eδt)].

But α ∈]
n

n − 2
,
n + 2

n − 2
[, δ =

n + 2 − (n − 2)α

2
∈]0, 1[.

For t ≤ ti < 0, we have:

et ≤ e(1−δ)tieδt, for all t ≤ ti.

and the fact thattξi ≤ t (ξi ≤ t), by integration of the previous two members, we obtain:

et − etξi ≤ e(1−δ)ti

δ
(eδt − eδtξi

), for all t ≤ ti,

We can write:

(eδtξi − eδt) ≤ δ

e(1−δ)ti
(etξi − et).

Then,

−L(wξi

i − wi) ≤ (wξi

i )α[− ǫiδ c

e(1−δ)ti
+ A c̄N−1−α + ǫiB](et − etξi

).

The term
ǫiδ c

e(1−δ)ti
− A c̄N−1−α − ǫiB is positive if:

ǫie
−(1−δ)ti → +∞,

then,

ǫ
(n−2)/2(1−δ)
i e−(n−2)/2ti → +∞.

If we take,ti = − 2

3(n− 2)
log ui(yi), we have:

ǫ
(n−2)/2(1−δ)
i [ui(yi)]

1/3 → +∞.

It is given by our Hypothesis in the proposition.

But the Hopf Maximum principle, gives:

min
θ∈Sn−1

wi(ti, θ) ≤ max
θ∈Sn−1

wi(2ξi − ti, θ),

then,
5



e(n−2)tiui(yi) min
B2(0)

ui ≤ c,

and,

[ui(yi)]
1/3 min

B2(0)
ui ≤ c,

Contradiction.

Proof of the Theorem 2.

The proof is similar than the proof of the theorem 1. Only the end of the proof is different.

Step 1:The blow-up analysis give:

There is a sequence of points(yi)i, yi → 0 and two sequences of positive real numbers

(li)i, (Li)i, li → 0, Li → +∞, such that if we setvi(y) =
ui(y + yi)

ui(yi)
, we have:

0 < vi(y) ≤ βi ≤ 2(n−2)/2, βi → 1.

vi(y) →
(

1

1 + |y|2
)(n−2)/2

, uniformly on all compact set of R
n.

l
(n−2)/2
i ui(yi) × inf

B1

ui → +∞,

Step 2:Application of the Hopf maximum principle.

We have the same notation that in the proof of the theorem 1. First, we taketi =
√

li as in the
Step 1 and we look to the end of the proof of the theorem 1. We replaceA by kǫi. We want to
proof that:

wi
λ − wi ≤ 0 ⇒ −L(wi

λ − wi) ≤ 0,

on ]ξi, ti] × Sn−1. We have the same defintion forξi ( as in the proof of the theorem 1).

For t ≤ ti < 0, we have:

et ≤ e(1−δ)tieδt, for all t ≤ ti.

and the fact thattξi ≤ t (ξi ≤ t), by integration of the previous two members, we obtain:

et − etξi ≤ e(1−δ)ti

δ
(eδt − eδtξi

), for all t ≤ ti,

We can write:

(eδtξi − eδt) ≤ δ

e(1−δ)ti
(etξi − et).

Then,

−L(wξi

i − wi) ≤ (wξi

i )α[− ǫiδ c

e(1−δ)ti
+ kǫi c̄N−1−α + ǫiB](et − etξi

).

The term
δ c

e(1−δ)ti
− k c̄N−1−α − B is positive becauseti → −∞ andδ ∈]0, 1[.

But the Hopf Maximum principle, gives:

min
θ∈Sn−1

wi(ti, θ) ≤ max
θ∈Sn−1

wi(2ξi − ti, θ),

then,

e(n−2)tiui(yi) min
B2(0)

ui ≤ c,

and,
6



l
(n−2)/2
i ui(yi) min

B2(0)
ui ≤ c,

Contradiction with the step 1.
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