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ASYMPTOTIC ESTIMATE FOR PERTURBED SCALAR CURVATURE EQUATI ON.

SAMY SKANDER BAHOURA

. . . 2

ABSTRACT. We consider the equatiahue = Veue ("T2)/("=2) L eW > with o €] LQ, nt 5
n — n —
and we give some minimal conditions & andVWW to have an uniform estimate for their so-

lutions whene — 0.

[

1. INTRODUCTION AND RESULTS.

We denoteh = — )", 0;; the geometric Laplacian dR™, n > 3.

Let us consider on open setof R™, n > 3, the following equation:

Aue = Vou M2/ LWy e (E)
n n+ 2[
n—2"n-—2"

whereV, andW, are two regular functions and €]
We assume:

0<a<Vez) <b [[VVe|[lLe <A (C1)

0<c<Wz)<d, ||[VW||L~ < B (C2)
Problem: Can we have asup x inf estimate with the minimal conditior{¢€’;) and(C5) ?

Note that forlV’ = 0, the equatiof{ E.) is the wellknowen scalar curvature equation on open
set ofR™, n > 3. In this case, there is many results about this equatiorfosexample [B] and
[C-L1].

WhenQ) = S,, YY. Li, give a flatness condition to have the boundednesseétiergy and the
existence of the simple blow-up points, see [L1] and [L2].

In [C-L 2], Chen and Lin gave a conterexample of solutionshef $calar curvature equation
with unbounded energy. The conditions of Li are minimal ifghedimension.

Note that, in [C-L 1] and [C-L 3], there is some results comiey Harnack inequalities of
typesup x inf with the "Li-flathess” conditions for the following equatio

Ay = Vo (r+2)/(n=2) 4 g(u)

whereg is a regular function ( at least" ) such thatg(t)/[t("*2)/(*=2)] is deacrising and
tends to O whem — +oco. They extend Li result ([L1]) to any open set of the euclidipace.

We can find in [A], some existence results for the presribedbs@curvature equation.

In our work we have no assumption on the energy. We use the-bjpanalysis and the
moving-plane method, developped by Gidas-Ni-Nirenberg [$5-N-N]. This method was used
by different authors to have a priori estimates, look fomegke, [B], [B-L-S] (in dimension 2),
[C-L1],[C-L3],[L1]and][L 2].

We set§ = [(n +2) — a(n — 2)]/2, ¢ €]0,1[. We have:
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Theorem 1 For al a,b,¢,d, A, B > 0, for all a €] n 2,n+2[andall compact set K of
n — n —

Q, thereisa positive constant ¢ = ¢(a, b, ¢, d, A, B, o, K, 2, n) such that:

e(n=2)/2(1-9) (sup u€)1/3 x infu. < e
K Q
for all u. solution of (E.) with V, and W, satisfying the conditions (C;) and (C5).

Now, we suppose thaf. satisfies:

0<a§V€(x)§b and ||v‘/5||Lco(Q) §ke (Cg)
We have: 5
Theorem 2 For all a,b,c,d, k, B > 0, for all G]LQ, n+2[and all compact set K of
n — n —

Q, thereis a positive constant ¢ = ¢(a, b, ¢, d, k, B, o, K, 2, n) such that:

sup ue X infue < ¢
K Q
for all u. solution of (E,) with V, and W, satisfying the conditions (C3) and (C5).

Note that in [B], we have some results as the previous but fesgibed scalar curvature
equation with subcritical exponent tending to the critiddere, we have aup x inf inequality
for the scalar curvature equation, with critical exponeetturbed by a nonlinear term. We can
see the influence of this non-linear term.

2. PROOFS OF THE THEOREMS.

Proof of the theorem 1.

Without loss of generality, we suppoSe= Bj the unit ball ofR™. We want to prove an a
priori estimate around 0. We can also suppose 0, the case /4 0 is solved in [B].

Let (u;) and(V;) be a sequences of functions Qrsuch that:

Aui = Viui(”+2)/("72) + EiWqu W; > 0,

7

with0 < a <V;(z) <b,0<a <W;(z) <d, ||Ville < Aand||W;||~ < B.
We argue by contradiction and we suppose thattiex inf is not bounded.
We have:

¥ ¢, R > 0 3 u,, g solution of(E; ) such that:

6("72)/2(175)1?"72( sup u€7(;7R)1/3 x infu . r > c, (H)
B(0,R) Q
Proposition :(blow-up analysis)
There is a sequence of pointg;);, y; — 0 and two sequences of positive real numbers

(11)i> (Li)i, li — 0, L; — +00, such that if we set; (y) = %
Ui\Yi

0<wv(y) <B; <202/2 5, - 1.

, we have:

1 (n—2)/2
vi(y) = | ————= , uniformly on all compact set of R".

l£n72)/2€i(n_2)/2(1_6) [Ui(yi)]l/g X lélf U; — +OO,
1

Proof of the proposition:

We use the hypothes(g7), we take two sequencég > 0, R; — 0 andc¢; — +oo, such that,
2



;"2 R (=2 (gup ;)Y X infu; > ¢; — +oo,
B(0,R;) B

Letx; € B(xo, R;) be a point such thatuppg o g,y ui = wi(z;) ands;(z) = (R; — |z —
J:i|)("*2)/2ui(x),x € B(zi, R;). Thenx; — 0.

We have:

{nax )51(575) = si(yi) = si(z;) = Ri(n_Q)/Qui(xi) > /¢i — +o0.
B(zi,R;

We set:

wily + (2/Tua(ya)*/ ")
li=Ri — |y — wil, wi(y) =vi(ys + ), vi(z) = bt /151'(35?))] )]-

Clearly we havey; — xo. We also obtain:

- )2/ (=2 = [s:(y)] /=D _ /(2

(@)i20—2) [wi(yi

1/2(n—2)
> =¢ — 4-00.
03/2("_2) Cg/z(n—z)

L=

1
(ci)l/Q(n—Q) a
ly — vi| < Ri — |y — x|, thus,|y — ;| < R; and,s;(y) < s;(y;). We can write:

If |Z| < L, theny = [yz + z/[uz(yl)]Q/(”*Q)] < B(yi,éili) with (Sl = nd

)R = ly = 5D < ) 1)
But, |y —yi| < dili, R > l; andR; — [y —yi| > Ri — dili > 1; — dil; = 1;(1 - 5;). We obtain,

(n—2)/2
ui(y) li (n—2)/2
N = < < 2 .
0<ulz) ui(yi) ~ Lz‘(l - 51')] B

1 (n—2)/2

We set3; = (ﬁ) , Clearly, we have3; — 1.
The functionu; satisfies:

o (n+2)/(n=2) | T o/

Av; = Vv, +eW; [w: ()| +2)/(n=2)]—a

where,Vi(y) = Vi [y + y/[ui(y:)]*/ "~>)] andWi(y) = W; [y + y/[ui(y:)]/ *~2)].

Without loss of generality, we can suppose that> V(0) = n(n — 2).

We use the elliptic estimates, Ascoli and Ladyzenskayaréms to have the uniform conver-
gence of(v;) to v on compact set dR™. The functionv satisfies:

Av=n(n—-2)0V"1 v0)=1, 0<v<1<20072/2
By the maximum principle, we hawe> 0 onR". If we use Caffarelli-Gidas-Spruck result, (
1

(n—2)/2
TP |2) . We have the same properties that in [B].
Y

see [C-G-S]), we obtainy(y) = (

Polar Coordinates(Moving-Plane method)

Now, we must use the same method than in the Theorem 1 of [BwiWase the moving-
plane method.

We must prove the lemma 2 of [B].

We sett €] — oo, —log2] andd € S,,_; :



w;(t,0) = e("_Q)t/2ui(yi +€'0), Vi(t,0) = Vi(y; + €'0) and W;(t,0) = W;(y; + €'0).

(n —2)°

YR with A, the Laplace-Baltrami

We consider the following operatér= 0;; — A, —
operator orf,,_1.

The functionw; is solution of:

7Lwi _ f/iwiNfl + eie[(n+2)7(n72)a]t/2Wiwia'

ForA <Oweset:

A =2\ —tw}(t,0) = w;(tY,0), VA(t,0) = V;(t*,0) et W (t,0) = Wi (1}, 0).

2
5 log u; (y;) + 2 andt; < log+/1;,

Remark: Here we work o\, t;] X S,,—1, with A < —
wherel; is chooses as in the proposition.

First, like in [B], we have the following lemma:

Lemma 1:

Let A, be the following property:

Ay ={A<0, 3 (tr,0)) €N ti] X Sp_1, W) (tx, 0x) — wi(tr, 0) > 0}.
Then, there is» < 0, such that forx < v, A, is not true.

Like in the proof of the Theorem 1 of [B], we want to prove théddwing lemma:
Lemma 2:

For\ < 0 we have :

wr —w; <0 = —L(wiA —w;) <0,
On]A,ti] X Sp_1.

Like in [B], we have:
A useful point:
& =sup{\ < \; = 2 + logn;, wN — w; < 0,0n]\ t;] x S,_1}. The reak; exists.

First, we have:

w;i (28 —t,0) = w;[(& —t + & —logni — 2) + (logm;: +2)],
the definition ofw; and the fact that;; < ¢, we obtain:

wi(2§i*t, 9) — l(n=2)(&i—t+&i—logni—2)]/2 n-2, [9626(Ei*t)+(&*10g 777;*2)] < 9(n=2)/2,n-2 _ &

%

Proof of the Lemma 2:

We know that:

—L(w§ —wi) = [V (wf )V = VN 4 e W (wf ) — e Wiw, ),
with § = [(n 4+ 2) — (n — 2)a]/2.

We denote by, andZ; the following terms:

2= (V= V)(wf)™ !+ Vil )V — 1)

2 2 2

and



Zy = ei(Wfi — Wi)(wfi)o‘e‘st&i + eie&gi Wz[(wfl)o‘ —w; ]+ eiWiwio‘(e&gi — e,
But, using the same method as in the proof of the theorem 1]pf\&have:

w;s < w; et w(t,0) <& pourtout (t,6) € [&,log2] x S,_1,
wherec is a positive constantnot dependingidior &; < logn; + 2;

VE = Vil < A(e" — ') et [WF = Wi| < B(e! — ™),
Then,

Zy < AN (el —et™) et Zy < 6B ((ws)” (ef —et™) + ee (w)" x (95 — edt),
and,

~Lwf —w) < (f) (AT FaB) (¢ — ) e (5 - )],

But, wf < ¢, we obtain:

—L(w§ —w;) < (W) [(AN 1 4 6B) (ef — ) + € (27 — )], (1)

We must see the sign of:

7 =[(AeN 17 4 ¢;B) (¢! — e!™") + ¢ (et — €%)].

n n+2[5in+27(n72)a
T 2

Fort <t; < 0, we have:

Buta €] €]o, 11.

n—2"n-2

el < 6(1*5)“6‘”, for all t <.
and the fact that®* < ¢ (& < 't), by integration of the previous two members, we obtain:

(175)&
& e
t_el <

< 5 (eét . e&tgi)

for all t <t;,

)

We can write:

0

S5t £} 33
(e *et)Sm(et —e').

Then,

—L(wfl —w;) < (w® GOC L AN-lma gy e;B](e' — et ).

i )a[*m

0 . L
The term% — AcN-1=o _ ¢, Bis positive if:
e K

ee” (170t 400,

then,

657}—2)/2(1—5)67(7172)/215,; = +o0.

If we take,t; = — log u;(y;), we have:

2
3(n—-2)
e DRy ()P — oo,

It is given by our Hypothesis in the proposition.

But the Hopf Maximum principle, gives:

i (¢ < (26 — ¢
T A

then,



n—2)t

el ‘i (y;) min u; < ¢,
B (0

2

and,

Contradiction.

Proof of the Theorem 2.

The proof is similar than the proof of the theorem 1. Only thd ef the proof is different.
Step 1: The blow-up analysis give:

There is a sequence of pointg;);, yi — 0 and two sequences of positive real numbers

(1)i, (Li)iy li — 0, L; — +o00, such that if we set;(y) = M

UZ(yi)
0<wvi(y) </ <2722 3 1.

, we have:

1 (n—2)/2
vi(y) — (THQ) , uniformly on all compact set of R".
Yy

lzgn—2)/2ui(yi) > igf u; — +00,
Step 2: Application of the Hopf maximum principle.

We have the same notation that in the proof of the theorenr$t, Fie take;; = /I; as in the
Step 1 and we look to the end of the proof of the theorem 1. Wacep! by ke;. We want to
proof that:

wiA —w; < 0= —L(wf — wl) <0,
onl&;, t;] x S,—1. We have the same defintion f§r( as in the proof of the theorem 1).
Fort <t; < 0, we have:
el < 6(1*5)“6‘”, for all t <.
and the fact that®: <t (¢; < t), by integration of the previous two members, we obtain:

e(lfé)ti

et — et" < T(e‘;t — e‘;tgi), for all ¢ <,
We can write:
& 5 133
(eét . eét) < e (et . et)'
Then,
_ v i0 i
L —w) < (wf ) [y ke e T 6B - o).
e k2

The termfi)t_ — keN—1=« _ Bis positive becausg — —oc andd €]0, 1[.

e k2

But the Hopf Maximum principle, gives:

(R, it ) < o (26— 0.0),

then,

e("_Q)tiui(yi) min u; < c,
Ba(0

and,



[(n=2)/2

i w;(y;) min u; < ¢,

B2(0)
Contradiction with the step 1.
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