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HARNACK INEQUALITIES FOR YAMABE TYPE EQUATIONS

SAMY SKANDER BAHOURA

ABSTRACT. We give some a priori estimates of typep x inf on Riemannian manifolds for

Yamabe and prescribed curvature type equations. An aiphcaf those results is the uniqueness
result forAu + eu = uN —1 with € small enough.

INTRODUCTION AND RESULTS.

We are on Riemannian manifold/, g) of dimensionn > 3. In this paper we denotA =
2n

n—2

—V7(V,) the geometric laplacian and =
The scalar curvature equation is:
4(n—1)

n—2
WhereR, is the scalar curvature andis a function (prescribed scalar curvature).

Au+ Ryu=VuN~t u>0.

When we supposF = 1, the previous equation is the Yamabe equation.

Here we study some properties of Yamabe and prescribedr snaleature equations. The
existence result for the Yamabe equation on compact Rieimamnanifolds was proved by T.
Aubin and R. Schoen ( see for example [Au]).

First, we suppose the manifold/, g) compact. We have:

Theorem 1. For all a,b,m > 0, there exist a positive constant C = C(a, b, m, M, g) such
that for every e > 0, for every smooth function V' such that a < V.(z) < b and every positive
solution u, of:

Au, + eue = Vou VT

with max,s u. > m, we have:
emaxu. minu, > C.
M M

Now, we consider a Riemannian manifdltl/, g) of dimensionn > 3 ( not necessarily com-
pact) and we work with Yamabe type equation,

Au — M = n(n — 2)u™ L

We look for a priori bounds for solutions of the previous etipra

Theorem2. 1f0 < m < A+ R, < 1/m thenfor every compact K of M, there exist a positive
constant ¢ = ¢(K, M, m,n, g) such that:

supu X infu < c.
K M
Note that there is lot of estimates of those type for prescricalar curvature on open $et
of R", see ([B],[B-M], [B-L-S], [C-L 1], [C-L 2], [L 1], [L 2], and [S]).
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In dimension 2 Brezis, Li and Shafrir [B-L-S], have proveaittbup + inf is bounded from
above when we suppose the prescribed curvature uniforpdghitzian. In [S], Shafrir got a
result of typesup +C inf, with L>° assumption on prescribed curvature.

In dimensions, > 3, we can find many results with different assumptions on pitesd
curvature, see [B], [L 2], [C-L 2].

Note that an important estimates was proved for Yamabe iquattout the produetip x inf,
in dimensions 3,4 by Li and Zhang [L-Z].

In our work we have no assumption on energy. There is an irapbwork if we suppose the
energy bounded, see for example [D-H-R].

Application:

We assume tha¥/ is compact and/m > R, > m > 0 on M. For small values of we can
have some upper bounds for the produgi x inf for the following equation:

Aue + eue = n(n —2)ulN 1.

Theorem 3. If ¢ — 0, then,
sup ue X inf ue < c(n,m, M, g).
M M

A consequence of Theorems 1 and 3 is the following corollary:
Corollary. Any sequence u; > 0 solutions of the following equation:

Au; + €u; =n(n — 2)uiN71,

converge uniformly to 0 on M when ¢; tendsto 0.
We have:
Theorem 4. On compact Riemannian manifold (M, g) with R, > 0 every-where, the sequence

_ (n—2)/4

u; > 0 solutions of the previous equation is such that for i large, u; = [ﬁ} .
n\n —

] (n—2)/4

. €;
Note that the previous result assert t{uat—

is the only solution of the previous
n(n —2)

equation fore; small.
We remark an important result in [B-V,V]; they have a samesegjuence than in theorem 4

with assumption on Ricci curvaturef{ic > ¢;cg, with ¢ > 0). Here we give a condition on
scalar curvature to obtain an uniqueness result.



Proof of theorem 1:

We need two lemmata and one proposition. We are going to goree estimates for the
Green functiorGG. of the operato\ + e.

Lemma 1.

For each pointt € M there existy, > 0 andC(z, M,g) > 0 such that for every €
B(zo, €), and everyu < g, everya, b € dB(z, i), there exist a curve, ;, of classeC linking
a to b which included inDB(z, ). The length of this curve i§v,,) < C(z, M, g) .

Proof:

Letx € M, we consider a chaft?, ¢) aroundz.

We take exponential map on the compact manifiddd According to T. Aubin and E. Hebey
see [Au] and [He], there exist> 0 such thaexp, is C* function of B(x,€) x B(0,¢) into M
andforallz € B(z,€), exp, is a diffeomorphismfronB(0, €) to B(z, €) with exp, [0B(0, u)] =
OB(z,u) C M for u < €/2. If we take two pointsz, b of 9B(z, ) (u < €/2), thena’ =
exp; 1 (a),b’ = exp;!(b) are two points 00B(0, ) C R™. On this sphere of center 0 and
radiusy:, we can linka’ to b’ by a great circle arc whose length<ds 2. Then, there exist a
curve of clas€o! 8,/ 4 in dB(0, 1) C R™ such that (6, ») < 2mu. Now we consider the curve
Yab = exp,(dar 1), this curve of clas€'?, link a to b and it is included i B(z, u) C M. The
length of~,_; is giving by the following formula :

1) = [y aat (222 ) Dy )

whereg;; is the local expression of the metgdn the chart(Q, ¢

We know that there exist a constait= C'(z, M, g) > 1 such that:

1 o
EHX”]Rn < gij(2) X' X7 < C||X||rn for all z € B(x,€/2) and all X € R"™.
We have,

1600) = [ \foutexp o APy g ALl

dt dt

déa ,b’

l(00) < C / dexp. () (5 |z,

andu : (z,v) — exp,(v) is C* on B(x,€) x B(0, ),

but,

l|duso|| = ||dexp,(v)|| < C'(x,M,g) V (z,v) € B(z,€¢/2)xB(0,¢/2)(in the sense of linear form),
Finaly,

d5 a’ b’

1) < O M) [ 1222 5 s = O, M) < 200, M
We need to estimate the smgularlties of Green functionsGse= G, .

Lemma 2.

The functionG; satisfies:

(o C(M,g)
N TR

whereC(M, g) > 0 andd, is the distance o/ for the metricg.

Proof:



According to the Appendix of [D-H-R] (see also [Au]), we canite the functionG; :

Gi(xv y) = H(‘Ta y) + E?:lri,k(xv y) + ui,k+1($7 y)a
with, k = [n/2] andu; ;11 is solution ofAw; 11 + €t k1 = Tigt1-
According to Giraud (see [Au] and [D-H-R]), we have:

. Co(M,
l)osmx,y)gwgf;T]ng,
i) |1y (2, y)] < ¢,(M. 9) ..k and,

T A = L
[dg(, y)" 2
i) T pt1(x,y) < Cr+1(M, g) and continuous ot x M .

We writeu; ;11 by using the Green functio;, we obtain with iii):

Chorr (M,
win(en) = [ Gila i )aV) < Cen () [ Gieavyy) = S0,

M €
If we combine the last inequality and i) et ii), we obtain tlesult of the lemma.

We have to estimate the Green function from below.
Proposition.

Consider two sequences of pointsidf, (z;) et (y;) such thate; # y; for all i andz; — =,
y; — y. Then, there exist a positive const@htdlepending on:, y, M andg, and a subsequence
(i;) such that:

C .
Gi;(wi;,yi;) > . v g

Proof:

We know that7; (z;, .) is C*° (M — z;) and satisfies the following equation:

AGZ(IL'“ ) + EiGi(IEi, ) = 0, in M — ZTj.
Case 1y = =x.
1 . . L
LetR; = §dg(xi,yi) > 0andQ; = M — B(x;, R;), according to maximum principle, the
functionG;(z;, .) has its maximum on the boundary@f. Then;

HsllaXGi(CEi,Z) = Gi(w4, 2:), d(xi,z) = R;.

Let ¢; be a point ofM such thatd,[y;, B(z;, R;)] = d(t;,y;). We havet; € 0B(x;, R;)
thend(z;,t;) = R;. Because the manifold/ is compact, we can find a minimizing curig
betweeny; andt;. Letd; a curve indB(z;, R;) with minimal length linkingt; to z;. We can
choose it like in lemma 1. Thels;) < c(z, M, g)R; and if we noted; = ¢; U L;, we have
1(0;) = 1(6;) + 1(Li) < R;[1 + ¢(x, M, g)]. The curve); link z; to y;, and it is included irf2;.

1 = . . L.
Letr; = —R;. We cover the curvé; by balls of radiir;, if we considerN; the minimal number
of those balls, then we havg;r; < [¢(x, M, g) + 1]R;, andN; < 5[c(xz, M, g) + 1].

If we work on open set of one chatt centered inr, with a small ball around:; removed,
~ 1 . -
Q; = Q — B(ay, 1—00Ri) then, we can apply the theorem 8.20 of [GT] (Harnack inetyat
each ball of the finite covering &¥, defined previous. In this Harnack inequality the constant

which depends on the radius is explicit and equalion)*/M+ 1) put hereR; — 0, and the
constant do not depend on the radius. We obtain:

sup Gz(z’uz) < C(IE,M,Q) inf G’L(xzvz)
B(zi,r.;) B(yiv'ri)
Then,Gi($i, Z) < Gl($z, Zz) < C(IL’, M,g)GZ(IL'“yz) forall z € Q;.
4



Now we write:

i:/]MGi(;pi,z)dVg(z):/ Gi(xi,z)dvg(zH/ Giwi, 2)dVy(2),

€ Q B(zi,2R;)
but,
/ Gi(zi, 2)dVy(z) < |Qs] sup Gy (i, 2) < [4|C(z, M, 9)Gi(zi, y:),
we taked; = [, ory) Gi(®i, 2)dVg(2), we have,

2R,
A; :/ Gilzi, exp,, (v)]V/|g]du :/ / =1 /[9]Gi s, exp,, (t6)]dtdo,
B(0,2R;) 0 5., %

if we use the lemma 8 in Hebey-Vaugon (see [H-V]), we ob\aﬁ@ <c¢(M,g). Butr; — 0,
thend, [z;, exp,, (t0)] = t (the geodesic are minimizing). We use the lemma 2 and we find:

/ M : 2
/ Gi(as, 2)dV,(2) < M
B(zi,2R;)

€
Finaly:
1—c (M )2 ", M
Gty < L= COLOR)? Ol M.g)
1€%|C(z, M, g)e; €
Case 2z # y.
We write,
1
Yo G, 2)avy(z) = / G, 2)dV, (2) + / Gilan, =)V (2).
€ M M—B(z4,) B(x;,5)

We take0 < § < M, whereinj, (M) is the injectivity radius of the compact manifold

M. We use the exponential map and we have:

)
/ G, 2)dV,(z) = / Giles, expy, (0)]y/Tgldo = / -t / Giles, exp,, (t6)]y/]g|dedd,
B(Il(g) B(O,ls) 0 Sn,1

If we use the lemma 8 in Hebey-Vaugon (see [H-V]), we obtain< c¢(M, g). Using the fact
t — exp,, (t0) is minimizing fort < ¢ < inj,(M) and the lemma 2, we obtain:

C'(M, g)o?
€; '

/ Gi(zi,2)dVy(z) <
B(xz;,0)
Then,

1—-C'"(M 2
/ Cils, )V (z) > L= L9
M—B(z;,9)

€
1

we can choost < § < —————.
C'(M,g)

I ' dg(z, )
Betweenz andy, we work like in the first case. We take < § < # for eachi

and we consider the maximum 6f;(z;,.) in Q; = M — B(z;,d). By maximum principle
Gi(zi, 2i) = maxq, Gi(r 2) = maxyp(,,5) Gi(wi, z). After passing to a subsequence, we can
suppose that; — z.

We have0 < § = d(z;,2;) — d(z,z). We choos& > 0 such that the ball of center and
radius24 is included in open chart centred.in (we can choose the exponential mapciand
use the lemma 1).
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Let ¢ be the point ofB(z, §) such thatd(y,t) = d[y, B(z,J)], t depend oz andy. We
consider a minimizing curvé; betweent andy. The manifold is compact and< < inj, (M),
then, in each point. of Ly, [B(u,4/2),exp,] is a local chart. We cover the cunig by a
finite number of balls of radit/10. We apply the Harnack inequality between those balls for the
functionsG;(z;, .). We infer that:

sup Gi(wi,s) < CO(x,y,M,g) inf Gi(zi,s) < C(x,y, M, 9)Gi(xi,yi)-
B(t,6/10) B(yi,6/10)

Now we want to know what happens between the ba&lls §/10) and B(z, §/10). The ball
B(z,24) is open chart set centered:in We choose a curvg, between: andt like in the first
case. This curve must stay éB(x,d) and its length < C(z,y, M, g)d, then, we can have a
covring of this curve by a minimal numbér of balls od radiid /10, in fact N < Ca(x,y, M, g)
(like in the first case). Those balls are included in the opartcset centered im which we
choose as in the begining. Then, the operaict ¢; has those coefficients depending only on
the open chart set centred inand not depending on, we can apply the Harnack inequality
(theorem 8.20 of [GT]) in this open set withoB{«:, 6/100), for the functiongz; («;, .). Finaly,
we obtain the same conclusion than in the case 1, there@xsC'(z, y, M, g) > 0 such:

Gi(IEi, S) < CGZ(IE“yl) Vsce Ql =M — B(xz,(S) Y1 > io.
The rest of the proof is the same than in the case 1.

Proof of Theorem 1.

We writeu; by using the Green functio@;, then:

minu; = ui(z;) = /M Gilws, y)Vily)ui(y) ™~ dVy(y),

then,

sup u; X mfuZ / Gi(xi,y)Vi(y)ui(y)NdVg(y) > anllbi[n Gi(z;, )/ ul(y)NdVg(y)
" ,

M M
Let G;(x;,y;) = miny G, (x4, .), after passing to a subsequence, we can assume;thatr
andy; — y. By using the previous proposition, we can suppose thaetkgist a positive
constant = ¢(z,y, M, g) such that:
C
Gi(mia yz) Z 6_
Then,

/ [Uz‘(y)]NdVg(y) < ¢€; sup u; inf u,.
M MM

We know argue by contradiction and assume thatip ,, u; x inf; u; tends to 0. We know
(' see a previous paper when we use the Moser iterate schee{®134% that ( after passing to a
subsequence) farlarge:

||Ui||Lq(]LI) — 0.
Assume thaty the Green function of the laplacian, we can write:

N-1
wlo) = g [ [ G M) cn ), ),
and if we use Holder mequallty, we obtain:

sup u; — 0.
M

But, this is a contradiction witkup,; u; > m > 0.



Proof of the theorems 2,3,4.

Part |: The metric in polar coordinates.

Let (M, g) a Riemannian manifold. We notg ;; the local expression of the metrcin the
exponential map centred in

We are concerning by the polar coordinates expression ah#igc. Using Gauss lemma, we
can write:

g =ds® = dt* + g};(r,0)d0’d6? = dt* +1°g};(r,0)d0'd07 = g ;jdx’da’,

in a polar chart with originz”, ]0, eo[xU*, with (U*,+) a chart ofS,,_;. We can write the

element volume:
dVy ="~ /|gk|drdd" ...d0" "t = \[[det(gy ij)]dat ... da",
then,

AV, = r" "/ [det(ge.ij)] [exp, (r0)]a” (0)drdo* . ..do" ",

where,o® is such thatdos, , = o*(0)d6" ...do"~ . (Riemannian volume element of the
sphere in the chafU*, ) ).

Then,
V9% = o™ (0)y/[det(ga,ij)).
Clearly, we have the following proposition:

Proposition 1: Let zq € M, there exist; > 0 and if we reducé’*, we have:

|87.§fj(x,r, 0)| + |8,09m§fj($,r,9)| < Cr, ¥V x € Blxg,e) V7 e(0,e], VOecU

and,

|8,.|§k|($,r,9)| + 8,09m|§k|(ac,r,9) < Cr, V€ B(xge)Vrelle] VOEe Uk,
Remark:

dr[log +/|g*|] is a local function of), and the restriction of the global function on the sphere

Sn—1, Or[log \/det(gs,i;)]. We will note,J(z,r,0) = \/det(gz,ij)-

Part Il: The laplacian in polar coordinates

Let's write the laplacian if0, ¢;] x U,

1

21|

n—1 ~ _pigi ~
—A =0 + ——0r + O, [log \/|9*(]0: + 99i (5%°% \/15%100).-

We have,

nfl 1 ipng
A =0, + ——08, + 0, log J(z,7,0)0, + ————=04: (3% \/|G*|54 ).
- gJ( ) r%/ﬁe(g |9% 1065 )

We write the laplacian ( radial and angular decomposition),

n —

1
—A = Opyp + . 8T+8T[1Og<](l',7’,9)]ar — AST(z)a
whereAg (,) is the laplacian on the sphefig(x).

We setLg(z,r)(...) = r*Ag, (»)(...)[exp,(r0)], clearly, this operator is a laplacian 8p_;
for particular metric. We write,

LG (’r’ T) = Agm,ng
7

)
—1



and,

n —

1 1
A=0,, + Or + 0p[J(z,7,0)]0, — — Lo(,7).
r r

If, wis function onM, then,u(r,0) = ulexp, (rd)] is the corresponding function in polar
coordinates centred in. We have,

—1 1
—Au = 8+ nT‘M + 0, (., 010y — —5 Lo(a,r)a.
Part Ill: "Blow-up” and "Moving-plane” methods

The "blow-up” technic

Let, (u;); a sequence of functions al such that,

= ®)

We argue by contradiction and we suppose thatx inf is not bounded.
We assume that:

Au; — Mu; = n(n — 2)uiN_1, u; >0, N =
n

¥ ¢, R > 0 3 u., g solution of(E) such that:

R"2 sup Ue,r X infuc g > c. (H)
B(IU,R) M

Proposition 2:

There exist a sequence of poiriig);, y; — xo and two sequences of positive real number
Uz |exp,,.
(11)i, (L;)sy l; — 0, L; — +00, such that if we consider;(y) = M we have:

uz(yz)
i) 0<v(y) < B <2072/2 g, — 1.

1

(n—2)/2
THQ) , uniformly on every compact set of R".
Y

i) vily) — (

ity 1T ()] x inf u; — +o0

Proof:
We use the hypothesi#7). We can take two sequencBs > 0, R; — 0 andc¢; — +oo, such
that,

R sup w; xinfu; > ¢; — 400,
B(Io,Ri) M
Let,x; € B(zo, Ri), suchthatupp,, g,y wi = wi(z;) ands;(x) = [Ri—d(x,x;)] "2/ 2u,(x),x €
B(,CEZ', Rz) Then,ZEi — Z0-

We have,

max  $;(x) = s;(yi) > si(x;) Ri(”72)/2ui(xi) > /¢ — +o0.

B(zi,R:)

Set:

ulexp,, (2/[ui(y:)]*/ ")) _

li=Ri —d(yi, i), ui(y) = uilexp,, (y)], vi(z) =

u;i(Yi)
Clearly,y; — xq. We obtain:
Li 2/(n—2 [si(ya)]?/ (=2 C;/(n_m 1/2(n—2)
bi= (Ci)l/Q(”*Q) [uz(yz)] : = 01/2("*2) = 01/2(”*2) =G — too.

K2 3
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. 1
If |2] < Ly, theny = exp,, [2/[ui(y:))]> =] € By, d:l;) with §; = AREC=) and

d(y,y:) < R; — d(yi, z;), thus,d(y, x;) < R; and,s;(y) < s;(y;), we can write,

()[R — ()72 < () 1)
But,d(y,y:) < dili, Ri > l; andR; —d(y, yi) > R; —6;l; > l; — 0;1; = 1;(1—0;), we obtain,

wly) = [zi(l&-)

1 (n—2)/2
We set,3; = <1 6-> , Clearly5; — 1.

< 2(n72)/2-

I (n—2)/2
0<wvi(z) = . ]

The functiony; is solution of:

ik ik Rglexp,,(y)] 1
—g k[expyi (y)]ajkvz — Ok |:g k |g|:| [expyi (y)]ﬁjvz + sz = TL(TL — 2)’0iN ’

By elliptic estimates and Ascoli, Ladyzenskaya theoremg, converge uniformely on each
compact to the function solution onR™ of,

Av=n(n—-2)0V"1 v0)=1, 0<v<1<20072/2
By using maximum principle, we havwe > 0 on R", the result of Caffarelli-Gidas-Spruck

(see [C-G-S]) giver(y) = ( !

(n—2)/2

7) . We have the same properties fgrin the
L+ [yf?

previous paper [B2].

Polar coordinates and "moving-plane” method

Let,

w;(t,0) = e("_Q)/Qﬂi(et, 0) = e=2t2y0 exp,, (€'9), et a(y;,t,0) = log J(y;, €', 0).
Lemmal:
The functionw; is solution of:

—Opw; — Oradyw; — Lg(y, ') + cw; = n(n — 2)w£v71,

with,
n—2\> n-2 o
C:C(yivtae) = + 8taf)\e R
2 2
Proof:
We write:
—2 -1 —2\?
Opw; = e"/?0,1; + nTwu Orpw; = e |:arrui + nTarui] + <n 7 ) w;.
-2
Ora = €0, log J (y;, €', 0), Oradsyw; = e(nt2)t/2 [0y log JO,u;) + i Oraw;.

the lemma is proved.

b
Now we havep,a = % b1(yi,t,0) = J(yi, et,0) >0,
1

We can write,

1 _
7—(%,5(\/ blwz) — Lg(yi, et)wi + [C(t) + bl 1/2b2(t, 9)]’[1}1 = n(n — 2)wiN_1,
Vb1
9



1 1

_ _ 2
Where,bg(t,e) == att(\/a) = 2—\/Eattb1 - W(&bl) .
Let,

w; = \/awi,
Lemma 2:

The functionw; is solution of:

(;) + 2V (;). Vg log(v/b1) + (¢ + by /by — eo)ib; =

—Ouw; + A
L\ (N-2)/2
—a-2 () A
b

where,c, = [ﬁAgyi,ez,gnﬂ (Vb1) + |V log(vb1)[?].
Proof:
We have:
1\ WV-2)/2
O~ oD, L wit (e ba)iy = nn — 2) (E) .
But,

Doy (Whiw) = VhiD,, - wi = 2Vowi Vov/b +withg, - (V).

STL

and,

Vo(vVbiwi) = w;Vor/b1 + /b1 Vow;,

we deduce than,

Vhidg, o wi=A, (i) + 2V (). Ve log(v/b1) — cati,

Sp—1 Sn—1
1

—A
/by Tvaets, g

The "moving-plane” method:

with ¢ = | (V/b1) + |Vg log(v/b1)[%]. The lemmais proved.

Let¢; areal number, and suppage< t. We setts = 2¢; — t anda? (¢, 0) = w; (15, 6).

We have,

(:)+2V o (655" ). Vg log(v/br )i +[e(tS)+by /(15 Yo (t5) —c§ isf" =

Gk
=n<n—2>( ) (i)™

by’
By using the same arguments than in [B2], we have:

— Ot + A,

¢,
yiet™tg

Proposition 3:
We have:

1) @;(Ni, 0) — wi(N\i +4,0) > k>0, VOES, 1.
Forall 3 > 0, there existg > 0 such that:

1
2) — e D2 < (N +1,0) < gDV Vi< B VOES, 1.
cs
We set,
10



Zi=—0u(..)+A () +2Vo(...). Vo log(v/b1) + (c+ by %by — ¢2)(...)

gyiyﬂt’yc

Sn—

Remark: In the operatorZ;, by using the proposition 3, the coeficient- bfl/ng — ca
satisfies:

¢+ 5;1/252 —co >k >0, pour t << 0,
it is fundamental if we want to apply Hopf maximum principle.

Goal:

Like in [B2], we have elliptic second order operator. HerésitZ;, the goal is to use the
"moving-plane” method to have a contradiction. For this,mast have:
Zi(05 —w;) <0, if @F —w; <0,
We write:

t’sn—l

Zi(05 — ;) = (A, -A

y-;,etgi 'S Guive

n—1

+2(V916t5i - Ve,et)(wfi)'vgﬁetﬁi 1Og( V b%) + 2V et (wzgi)'vgyeﬁi [10g( V b%) — log \/a]+

+2V i (V, e — Voer)log /by — [(c+ b/ %by — e2)& — (c+ by %by — c)]f +

1 (N=2)/2 1\ (N-2)/2
+n(n —2) o (@)N= —n(n —2) <a) Nt (% % *1)
1

Clearly, we have:

Lemma 3 :
1
b1(yi t,0) =1— gRicciyi(H, 0)e* + ...,
Ry(e'0) = Ry(yi)+ < VRy(y;)|0 > €' + ...
According to proposition 1 and lemma 3,
Propostion 4 :

2

Zi(5 — i) < by GO [(@ )N — N+

12— | [[Vgaft| + V3 (5| + [Ricciy, [+ (@5 )Y + [ Ry ()| +C7e¥ —e).
Proof:
We use proposition 1, we have:

a(yi,t,0) = log J(y;, €', 0) = log by, |0:b1 (t)| + |0s:b1 (t)] + |Ora(t)] < Ce*,
and,

|80] b1| + |80],0kb1| + at.ﬂjb1| + |at,9j,9kb1| S Ce2t;
then,

|0:b1 (t5) — O4by (1) < C'|e? — €2t£i|, on | —oo,loger] x S,—1,V x € B(xo,€1)

Locally,
11



1 _olpi -
Boytg,, = Lol e) = O 57 (¢!,0)1/ 1" (e, 0)|0gs].

1
)

Thus, in[0, e;] x U*, we have,

-

then,Ai =B, +D; with,

1
9%

N

i

&
D (5" |§k|391)] - i (5" |§"’I<9m)] (@)

B; = {gezm (etﬁi : 9) . geleﬂ' (et, 9)} 89191' wfl (t, 9),

and,

1 ~0lgI i ~L i 1 ~9tgI ~ ~ &
D; = lmae 7 (", 0)y/1g* (e, 0)] - T 5" (et,9>\/|gk|<et,e>]] Do (1,0),
we deduce,

& ~ & oy
A; < Cyle? — e [|Vousf| + (V3]

If we takeC' = max{C;,1 < i < ¢} and if w use(x * x1), we obtain proposition 4.
We have,

—2\* n-2
C(y’iatve) = (n 2 ) + n D) ata+Rge2t7 (0[1)

1 1
ba(t,0) = b)) = ——09,; b — be)2
2(t,0) = 0y (\/b1) 2\/53& 1 4(b1)3/2(3t 1) (a2)
1
cr=[—=4y ., (Vb1)+|Velog(v/b1)[*], (a3)
/by Jwietis, g
Then,
. _ (n—2) 2t t 3t t
Oe(ys, t,0) = 5 Oua+2e"Ry(e’) + e < VRy(e'0)|0 >,

by proposition 1,

|(’)t02| + |(’)tb1| + |(’)tb2| + |atC| < K1€2t,

1 .
The case:0 < m < A+ R, < — for the equation Au — Mu = n(n — 2)u’¥V !
m

_Let o a point of M, we consider a conformal change of mefjic= %/ ("~2)g such that,
Ricci(xzp) = 0. See for example [Au] (also Lee and Parker [L,P]).

We are concerning by the following equation,
Agu—du=n(n—2)u’¥ 1,
the conformal change of metric give when weset u/p,
Agv+ Rzv = n(n — 2)oV 1 4 (A + R,V 2.

L~ -2
The notationR is for "

mR andR = Rg OI‘R == Rg

Our calculus for the metrig are the same that for the metgc But we have some new
properties:

1= _ _
\/det(Gy, i) =1 — gRicci(yi)(H, 0)r? + ..., and Ry(y;) — 0, Ricci(y;) — 0.

12



If we see the coeficient in the tere’*" — ¢2¢, we can say that all those terms are tending to 0,
see proposition 4. Only the terd + R, ) (2" — ¢2t) < m(e2* —e2) (m > 0), is the biggest.

In fact, the increment of the local expression of the m@ﬁcf gjk, have terms of typéy, ﬁ;f
et agj,gkﬂ}fi but we know by proposition 2 that those terms tend to 0 bectagskmit function

is radial and do not depend on the angles.
We apply proposition 3. We take = log+/l; with [; like in proposition 2. The fact
. . . 2
VIi[wi(y:)])? =2 — +oo ('see proposition 2), impliels = log v/1; > 5 logui(y;) +2 =
n—
A; + 2. Finaly, we can work ofi — oo, ¢;].

We defineg; by:

& = sup{)\ <\ +2, 11)1(2)\ - t,9) - ’Lbi(ﬁ,(g) <0 on [)\,ﬁi] X Sn—l}-
If we use proposition 4 and the similar technics that in [B2]ean deduce by Hopf maximum
principle,

maxwi(ti, 9) S énin ’LTJZ'(Q&' — ti, 9),
n—1

Sn—l
which implies,
4(7172)/2 . . 1 . <
l; u;(y;) X minu; < ec.

Itis in contradiction with proposition 2.

Then we have,

supu X infu < ¢ = (K, M,m,g,n).
% M
Application:

Let M a Riemannian manifold of dimensien> 3, and consider a sequence of functiens
such that:
Au; + eju; = n(n — 2)u; N 1
If, the scalar curvatur&, > m > 0 on M, then, applying the previous result with= —¢;,
we obtain:

,61'—>0

supu; X infu; < e, Vi,
M M

Proof of the theorem 4:
Without loss of generality we suppose,

Au; + eu; = ufvfl, et mj\z}xui — 0.
Lemma 1: There exist a positive constantsuch that:

supu; < cinf u;, Vi.
M M

Proof of lemma 1;

Suppose by contradiction:

) Sup s Us
lim sup —2— = 400,
i—too IDfar U

. su U;
After passing toa subsequence, we can assum%‘.”—l — +00.
mrps u;

We havesup,; u; = wu;(y;) etinf yr u; = u;(z;). We also suppose,; — x ety; — y.
13



Let L be a minimizing curve between andy, taked > 0 such thatd < inj,(M), with
injy (M) the injectivity radius of the compact manifold .

For alla € L, [B(a,d), (exp,) '] is a local chart around, but L is compact. We can cover
this curve by a finite number of balls centred in a pointdaind of radiusgi/5. Letay, ..., ax
those points, withg; = x anday = y.

In each ballB(a;, §), u; is solution of Au; +(¢; —ul ~?)u; = 0, we use the factup ,; u; — 0
and we apply the Harnack inequality of [G-T] ( see theoren@B.&e obtain:

sup u; <C; inf  w;, j=1,...,k.

B(a;,6/5) B(a;,6/5
We deduce:
sup u; < CrCr_1..... Cy  inf
B(y,5/5) B(x,5/5)
In other words:
supu; < Cg..... Ch inf u;.
M M

It's in contradiction with our hypothesis.

Lemma 2: There exist two constants; , ks > 0 such that:

k/’lﬁi(n_Q)/4 < ul(x) < kQGi(n_Q)/4, Ve M, V1.
Proof of lemma 2:

Let G; the Green function of the operatar+ ¢;, this equation satisfies:

1
/ Gi(z,y)dVy(y) = —, Yo € M.
M €

K2

We write:

. N—1 . N—1 (inf pr ug) V!
infu; = w(x;) = Gi(zs, y)u; ~ (y)dVy(y) > (inf u;) Gi(zi,y)dVy(y) = ———,
M M M M

€
thus,
infu; < e (274,
M

We the same idea we can prosep,, u; > ¢ ("~2/%. We deduce lemma 2 from lemma 1
and the two last inequalities.

Lemma 3: There exist a rank, such thatu; = ¢;("=2/4 fori > i,.

Proof of lemma 3:

(17 . . . . .
Let,w; = W. This function is solution of:

Aw; = ei(wfvfl —w;) = eiwi(wfvfz -1). (%)

Case I:N —2>1(3 <n<6),
To simplify our computations we suppose that- 2 is an integer.

N=2 1 = (wi —1)(1+w; +...), we multiply (x) by w; — 1

i

According to binomial formulayw
and we integrate, we obtain:

|VU}1|2 S C’el/ |wz — 1|2,
M M

Suppose that we have infinity such thatw; # 1, then we can consider the following func-
. w; — 1
tions:zj = ——.
C lw =1

14



z; verifiy, ||zl = 1,]|Vz]]3 < Ce; — 0, thus,z; — 1 in L?(M) and in particular,
Sy ziwi(1 + w; + ...) — C" # 0 (by using lemma 2). But, if we integrate), we find
Jas ziwi(1 4 w; 4 ....) = 0, it's a contradiction.

Thus, there exist a rank such that = 1 after this rank.

Case2.0<N—-2<1(n>17):
To simplify our computations, we suppose thatN — 2) is an integer.

Now we takewY =2 — 1 and we writew; — 1 = (w)¥ ~2?)"/(N=2) _ 1, py using the binomial
formula and the same ideas than in the previous case we ahtamesult.
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