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HARNACK INEQUALITIES FOR YAMABE TYPE EQUATIONS

SAMY SKANDER BAHOURA

ABSTRACT. We give some a priori estimates of typesup× inf on Riemannian manifolds for
Yamabe and prescribed curvature type equations. An application of those results is the uniqueness
result for∆u + ǫu = u

N−1 with ǫ small enough.

INTRODUCTION AND RESULTS.

We are on Riemannian manifold(M, g) of dimensionn ≥ 3. In this paper we denote∆ =

−∇j(∇j) the geometric laplacian andN =
2n

n− 2
.

The scalar curvature equation is:

4(n− 1)

n− 2
∆u+Rgu = V uN−1, u > 0.

WhereRg is the scalar curvature andV is a function (prescribed scalar curvature).

When we supposeV ≡ 1, the previous equation is the Yamabe equation.

Here we study some properties of Yamabe and prescribed scalar curvature equations. The
existence result for the Yamabe equation on compact Riemannian manifolds was proved by T.
Aubin and R. Schoen ( see for example [Au]).

First, we suppose the manifold(M, g) compact. We have:

Theorem 1. For all a, b,m > 0, there exist a positive constant C = C(a, b,m,M, g) such
that for every ǫ > 0, for every smooth function V such that a ≤ Vǫ(x) ≤ b and every positive
solution uǫ of:

∆uǫ + ǫuǫ = Vǫuǫ
N−1

with maxM uǫ ≥ m, we have:

ǫmax
M

uǫ min
M

uǫ ≥ C.

Now, we consider a Riemannian manifold(M, g) of dimensionn ≥ 3 ( not necessarily com-
pact) and we work with Yamabe type equation,

∆u− λu = n(n− 2)uN−1.

We look for a priori bounds for solutions of the previous equation.

Theorem 2. If 0 < m ≤ λ+Rg ≤ 1/m then for every compactK of M , there exist a positive
constant c = c(K,M,m, n, g) such that:

sup
K
u× inf

M
u ≤ c.

Note that there is lot of estimates of those type for prescribed scalar curvature on open setΩ
of R

n, see ([B],[B-M], [B-L-S], [C-L 1], [C-L 2], [L 1], [L 2], and [S]).
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In dimension 2 Brezis, Li and Shafrir [B-L-S], have proved that sup + inf is bounded from
above when we suppose the prescribed curvature uniformly lipschitzian. In [S], Shafrir got a
result of typesup +C inf, with L∞ assumption on prescribed curvature.

In dimensionsn ≥ 3, we can find many results with different assumptions on prescribed
curvature, see [B], [L 2], [C-L 2].

Note that an important estimates was proved for Yamabe equation about the productsup× inf,
in dimensions 3,4 by Li and Zhang [L-Z].

In our work we have no assumption on energy. There is an important work if we suppose the
energy bounded, see for example [D-H-R].

Application:

We assume thatM is compact and1/m ≥ Rg ≥ m > 0 onM . For small values ofλ we can
have some upper bounds for the productsup× inf for the following equation:

∆uǫ + ǫuǫ = n(n− 2)uN−1
ǫ .

Theorem 3. If ǫ→ 0, then,

sup
M

uǫ × inf
M
uǫ ≤ c(n,m,M, g).

A consequence of Theorems 1 and 3 is the following corollary:

Corollary. Any sequence ui > 0 solutions of the following equation:

∆ui + ǫiui = n(n− 2)ui
N−1,

converge uniformly to 0 on M when ǫi tends to 0.

We have:

Theorem 4. On compact Riemannian manifold (M, g) with Rg > 0 every-where, the sequence

ui > 0 solutions of the previous equation is such that for i large, ui ≡
[

ǫi
n(n− 2)

](n−2)/4

.

Note that the previous result assert that

[

ǫi
n(n− 2)

](n−2)/4

is the only solution of the previous

equation forǫi small.

We remark an important result in [B-V,V]; they have a same consequence than in theorem 4
with assumption on Ricci curvature (Ric ≥ ǫicg, with c > 0). Here we give a condition on
scalar curvature to obtain an uniqueness result.
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Proof of theorem 1:

We need two lemmata and one proposition. We are going to provesome estimates for the
Green functionGǫ of the operator∆ + ǫ.

Lemma 1.

For each pointx ∈ M there existǫ0 > 0 andC(x,M, g) > 0 such that for everyz ∈
B(x0, ǫ0), and everyµ ≤ ǫ0, everya, b ∈ ∂B(z, µ), there exist a curveγa,b of classeC1 linking
a to b which included in∂B(z, µ). The length of this curve isl(γa,b) ≤ C(x,M, g)µ.

Proof:

Let x ∈M , we consider a chart(Ω, ϕ) aroundx.

We take exponential map on the compact manifoldM . According to T. Aubin and E. Hebey
see [Au] and [He], there existǫ > 0 such thatexpx isC∞ function ofB(x, ǫ) ×B(0, ǫ) intoM
and for allz ∈ B(x, ǫ), expz is a diffeomorphism fromB(0, ǫ) toB(z, ǫ) with expz[∂B(0, µ)] =
∂B(z, µ) ⊂ M for µ ≤ ǫ/2. If we take two pointsa, b of ∂B(z, µ) (µ ≤ ǫ/2 ), thena′ =
exp−1

z (a), b′ = exp−1
z (b) are two points of∂B(0, µ) ⊂ R

n. On this sphere of center 0 and
radiusµ, we can linka′ to b′ by a great circle arc whose length is≤ 2πµ. Then, there exist a
curve of classC1 δa′,b′ in ∂B(0, µ) ⊂ R

n such thatl(δa′,b′) ≤ 2πµ. Now we consider the curve
γa,b = expz(δa′,b′), this curve of classC1, link a to b and it is included in∂B(z, µ) ⊂ M . The
length ofγa,b is giving by the following formula :

l(γa,b) =

∫ 1

0

√

gij [γa,b(s)](
dγa,b

dt
)i(s)(

dγa,b

dt
)j(s)ds.

wheregij is the local expression of the metricg in the chart(Ω, ϕ).

We know that there exist a constantC = C(x,M, g) > 1 such that:

1

C
||X ||Rn ≤ gij(z)X

iXj ≤ C||X ||Rn for all z ∈ B(x, ǫ/2) and all X ∈ R
n.

We have,

l(γa,b) =

∫ 1

0

√

gij [expz [δa′,b′(s)]](
d[expz [δa′,b′ ]]

dt
)i(s)(

d[expz [δa′,b′ ]]

dt
)j(s)ds,

l(γa,b) ≤ C

∫ 1

0

||d expz(
dδa′,b′

dt
)(s)||Rnds,

andu : (z, v) → expz(v) isC∞ onB(x, ǫ) ×B(0, ǫ),

but,

||duz,v|| = ||d expz(v)|| ≤ C′(x,M, g) ∀ (z, v) ∈ B(x, ǫ/2)×B(0, ǫ/2)(in the sense of linear form),

Finaly,

l(γa,b) ≤ C̃(x,M, g)

∫ 1

0

||dδa′,b′

dt
(s)||Rnds = C̃(x,M, g)l(δa′,b′) ≤ 2πC̃(x,M, g)µ.

We need to estimate the singularities of Green functions. Set Gi = Gǫi
.

Lemma 2.

The functionGi satisfies:

Gi(x, y) ≤
C(M, g)

ǫi[dg(x, y)]n−2
.

whereC(M, g) > 0 anddg is the distance onM for the metricg.

Proof:
3



According to the Appendix of [D-H-R] (see also [Au]), we can write the functionGi :

Gi(x, y) = H(x, y) + Σk
j=1Γi,k(x, y) + ui,k+1(x, y),

with, k = [n/2] andui,k+1 is solution of∆ui,k+1 + ǫiui,k+1 = Γi,k+1.

According to Giraud (see [Au] and [D-H-R]), we have:

i) 0 ≤ H(x, y) ≤ C0(M, g)

[dg(x, y)]n−2
,

ii) |Γi,j(x, y)| ≤
Cj(M, g)

[dg(x, y)]n−2
, j = 1, . . . , k and,

iii) Γi,k+1(x, y) ≤ Ck+1(M, g) and continuous onM ×M .

We writeui,k+1 by using the Green functionGi, we obtain with iii):

ui,k+1(x, y) =

∫

M

Gi(x, y)Γi,k+1(x, y)dVg(y) ≤ Ck+1(M, g)

∫

M

Gi(c, y)dVg(y) =
Ck+1(M, g)

ǫi
.

If we combine the last inequality and i) et ii), we obtain the result of the lemma.

We have to estimate the Green function from below.
Proposition.

Consider two sequences of points ofM , (xi) et (yi) such thatxi 6= yi for all i andxi → x,
yi → y. Then, there exist a positive constantC depending onx, y,M andg, and a subsequence
(ij) such that:

Gij
(xij

, yij
) ≥ C

ǫij

∀ j.

Proof:

We know thatGi(xi, .) isC∞(M − xi) and satisfies the following equation:

∆Gi(xi, .) + ǫiGi(xi, .) = 0, in M − xi.

Case 1:y = x.

Let Ri =
1

2
dg(xi, yi) > 0 andΩi = M − B(xi, Ri), according to maximum principle, the

functionGi(xi, .) has its maximum on the boundary ofΩi. Then;

max
Ωi

Gi(xi, z) = Gi(xi, zi), d(xi, zi) = Ri.

Let ti be a point ofM such thatdg[yi, B(xi, Ri)] = d(ti, yi). We haveti ∈ ∂B(xi, Ri)
thend(xi, ti) = Ri. Because the manifoldM is compact, we can find a minimizing curveLi

betweenyi andti. Let δi a curve in∂B(xi, Ri) with minimal length linkingti to zi. We can
choose it like in lemma 1. Thenl(δi) ≤ c(x,M, g)Ri and if we notēδi = δi ∪ Li, we have
l(δ̄i) = l(δi) + l(Li) ≤ Ri[1 + c(x,M, g)]. The curvēδi link zi to yi, and it is included inΩi.

Let ri =
1

5
Ri. We cover the curvēδi by balls of radiiri, if we considerNi the minimal number

of those balls, then we haveNiri ≤ [c(x,M, g) + 1]Ri, andNi ≤ 5[c(x,M, g) + 1].

If we work on open set of one chartΩ centered inx, with a small ball aroundxi removed,

Ω̃i = Ω − B(xi,
1

100
Ri) then, we can apply the theorem 8.20 of [GT] (Harnack inequality) in

each ball of the finite covering of̄δi defined previous. In this Harnack inequality the constant
which depends on the radius is explicit and equal toC0(n)(Λ/λ)+νRi) but hereRi → 0, and the
constant do not depend on the radius. We obtain:

sup
B(zi,ri)

Gi(xi, z) ≤ C(x,M, g) inf
B(yi,ri)

Gi(xi, z).

Then,Gi(xi, z) ≤ Gi(xi, zi) ≤ C(x,M, g)Gi(xi, yi) for all z ∈ Ωi.
4



Now we write:

1

ǫi
=

∫

M

Gi(xi, z)dVg(z) =

∫

Ωi

Gi(xi, z)dVg(z) +

∫

B(xi,2Ri)

Gi(xi, z)dVg(z),

but,
∫

Ωi

Gi(xi, z)dVg(z) ≤ |Ωi| sup
Ωi

Gi(xi, z) ≤ |Ωi|C(x,M, g)Gi(xi, yi),

we takeAi =
∫

B(xi,2Ri)
Gi(xi, z)dVg(z), we have,

Ai =

∫

B(0,2Ri)

Gi[xi, expxi
(v)]
√

|g|du =

∫ 2Ri

0

∫

Sn−1

tn−1
√

|g|Gi[xi, expxi
(tθ)]dtdθ,

if we use the lemma 8 in Hebey-Vaugon (see [H-V]), we obtain
√

|g| ≤ c(M, g). ButRi → 0,
thendg[xi, expxi

(tθ)] = t (the geodesic are minimizing). We use the lemma 2 and we find:

∫

B(xi,2Ri)

Gi(xi, z)dVg(z) ≤
c′(M, g)(Ri)

2

ǫi
.

Finaly:

Gi(xi, yi) ≤
1 − c′(M, g)(Ri)

2

|Ωi|C(x,M, g)ǫi
≥ C′(x,M, g)

ǫi
.

Case 2: x 6= y.

We write,

1

ǫ
=

∫

M

Gi(xi, z)dVg(z) =

∫

M−B(xi,δ)

Gi(xi, z)dVg(z) +

∫

B(xi,δ)

Gi(xi, z)dVg(z).

We take0 < δ ≤ injg(M)

2
, whereinjg(M) is the injectivity radius of the compact manifold

M . We use the exponential map and we have:

∫

B(xi,δ)

Gi(xi, z)dVg(z) =

∫

B(0,δ)

Gi[xi, expxi
(v)]
√

|g|dv =

∫ δ

0

tn−1

∫

Sn−1

Gi[xi, expxi
(tθ)]

√

|g|dtdθ,

If we use the lemma 8 in Hebey-Vaugon (see [H-V]), we obtain|g| ≤ c(M, g). Using the fact
t→ expxi

(tθ) is minimizing fort ≤ δ < injg(M) and the lemma 2, we obtain:

∫

B(xi,δ)

Gi(xi, z)dVg(z) ≤
C′(M, g)δ2

ǫi
.

Then,

∫

M−B(xi,δ)

Gi(xi, z)dVg(z) ≥
1 − C′(M, g)δ2

ǫi
,

we can choose0 < δ <
1

√

C′(M, g)
.

Betweenx andy, we work like in the first case. We take0 < δ <
dg(x, y)

2
, for eachi

and we consider the maximum ofGi(xi, .) in Ωi = M − B(xi, δ). By maximum principle
Gi(xi, zi) = maxΩi

Gi(x,z) = max∂B(xi,δ)Gi(xi, z). After passing to a subsequence, we can
suppose thatzi → z.

We have0 < δ = d(xi, zi) → d(x, z). We chooseδ > 0 such that the ball of centerx and
radius2δ is included in open chart centred inx. (we can choose the exponential map inx and
use the lemma 1).

5



Let t be the point ofB(x, δ) such thatd(y, t) = d[y,B(x, δ)], t depend onx andy. We
consider a minimizing curveL1 betweent andy. The manifold is compact andδ << injg(M),
then, in each pointu of L1, [B(u, δ/2), expu] is a local chart. We cover the curveL1 by a
finite number of balls of radiiδ/10. We apply the Harnack inequality between those balls for the
functionsGi(xi, .). We infer that:

sup
B(t,δ/10)

Gi(xi, s) ≤ C(x, y,M, g) inf
B(yi,δ/10)

Gi(xi, s) ≤ C(x, y,M, g)Gi(xi, yi).

Now we want to know what happens between the ballsB(t, δ/10) andB(z, δ/10). The ball
B(x, 2δ) is open chart set centered inx. We choose a curveL2 betweenz andt like in the first
case. This curve must stay in∂B(x, δ) and its lengthl ≤ C1(x, y,M, g)δ, then, we can have a
covring of this curve by a minimal numberN of balls od radiiδ/10, in factN ≤ C2(x, y,M, g)
(like in the first case). Those balls are included in the open chart set centered inx which we
choose as in the begining. Then, the operator∆ + ǫi has those coefficients depending only on
the open chart set centred inx and not depending onz, we can apply the Harnack inequality
(theorem 8.20 of [GT]) in this open set withoutB(x, δ/100), for the functionsGi(xi, .). Finaly,
we obtain the same conclusion than in the case 1, there existC = C(x, y,M, g) > 0 such:

Gi(xi, s) ≤ CGi(xi, yi) ∀ s ∈ Ωi = M −B(xi, δ) ∀ i ≥ i0.

The rest of the proof is the same than in the case 1.

Proof of Theorem 1.

We writeui by using the Green functionGi, then:

min
M

ui = ui(xi) =

∫

M

Gi(xi, y)Vi(y)ui(y)
N−1

dVg(y),

then,

sup
M

ui × inf
M
ui ≥

∫

M

Gi(xi, y)Vi(y)ui(y)
N
dVg(y) ≥ amin

M
Gi(xi, .)

∫

M

ui(y)
N
dVg(y).

LetGi(xi, yi) = minM Gi(xi, .), after passing to a subsequence, we can assume thatxi → x
and yi → y. By using the previous proposition, we can suppose that there exist a positive
constantc = c(x, y,M, g) such that:

Gi(xi, yi) ≥
c

ǫi
.

Then,
∫

M

[ui(y)]
NdVg(y) ≤ ǫi sup

M
ui inf

M
ui.

We know argue by contradiction and assume thatǫi supM ui × infM ui tends to 0. We know
( see a previous paper when we use the Moser iterate scheme, see [B1]), that ( after passing to a
subsequence) forq large:

||ui||Lq(M) → 0.

Assume thatG the Green function of the laplacian, we can write:

ui(x) =
1

V ol(M)

∫

M

ui +

∫

M

G(x, y)[Vi(y)ui(y)
N−1 − ǫiui(y)]dVg(y),

and if we use Holder inequality, we obtain:

sup
M

ui → 0.

But, this is a contradiction withsupM ui ≥ m > 0.

6



Proof of the theorems 2,3,4.

Part I: The metric in polar coordinates.

Let (M, g) a Riemannian manifold. We notegx,ij the local expression of the metricg in the
exponential map centred inx.

We are concerning by the polar coordinates expression of themetric. Using Gauss lemma, we
can write:

g = ds2 = dt2 + gk
ij(r, θ)dθ

idθj = dt2 + r2g̃k
ij(r, θ)dθ

idθj = gx,ijdx
idxj ,

in a polar chart with originx”, ]0, ǫ0[×Uk, with (Uk, ψ) a chart ofSn−1. We can write the
element volume:

dVg = rn−1
√

|g̃k|drdθ1 . . . dθn−1 =
√

[det(gx,ij)]dx
1 . . . dxn,

then,

dVg = rn−1
√

[det(gx,ij)][expx(rθ)]αk(θ)drdθ1 . . . dθn−1,

where,αk is such that,dσSn−1
= αk(θ)dθ1 . . . dθn−1. (Riemannian volume element of the

sphere in the chart(Uk, ψ) ).

Then,

√

|g̃k| = αk(θ)
√

[det(gx,ij)].

Clearly, we have the following proposition:

Proposition 1: Let x0 ∈M , there existǫ1 > 0 and if we reduceUk, we have:

|∂r g̃
k
ij(x, r, θ)| + |∂r∂θm g̃k

ij(x, r, θ)| ≤ Cr, ∀ x ∈ B(x0, ǫ1) ∀ r ∈ [0, ǫ1], ∀ θ ∈ Uk.

and,

|∂r|g̃k|(x, r, θ)| + ∂r∂θm |g̃k|(x, r, θ) ≤ Cr, ∀ x ∈ B(x0, ǫ1) ∀ r ∈ [0, ǫ1], ∀ θ ∈ Uk.

Remark:

∂r[log
√

|g̃k|] is a local function ofθ, and the restriction of the global function on the sphere
Sn−1, ∂r[log

√

det(gx,ij)]. We will note,J(x, r, θ) =
√

det(gx,ij).

Part II: The laplacian in polar coordinates

Let’s write the laplacian in[0, ǫ1] × Uk,

−∆ = ∂rr +
n− 1

r
∂r + ∂r[log

√

|g̃k|]∂r +
1

r2
√

|g̃k|
∂θi(g̃θiθj

√

|g̃k|∂θj ).

We have,

−∆ = ∂rr +
n− 1

r
∂r + ∂r log J(x, r, θ)∂r +

1

r2
√

|g̃k|
∂θi(g̃θiθj

√

|g̃k|∂θj ).

We write the laplacian ( radial and angular decomposition),

−∆ = ∂rr +
n− 1

r
∂r + ∂r[log J(x, r, θ)]∂r − ∆Sr(x),

where∆Sr(x) is the laplacian on the sphereSr(x).

We setLθ(x, r)(...) = r2∆Sr(x)(...)[expx(rθ)], clearly, this operator is a laplacian onSn−1

for particular metric. We write,

Lθ(x, r) = ∆gx,r,Sn−1

,

7



and,

∆ = ∂rr +
n− 1

r
∂r + ∂r[J(x, r, θ)]∂r −

1

r2
Lθ(x, r).

If, u is function onM , then,ū(r, θ) = u[expx(rθ)] is the corresponding function in polar
coordinates centred inx. We have,

−∆u = ∂rrū+
n− 1

r
∂rū+ ∂r[J(x, r, θ)]∂r ū− 1

r2
Lθ(x, r)ū.

Part III: ”Blow-up” and ”Moving-plane” methods

The ”blow-up” technic

Let, (ui)i a sequence of functions onM such that,

∆ui − λui = n(n− 2)ui
N−1, ui > 0, N =

2n

n− 2
, (E)

We argue by contradiction and we suppose thatsup× inf is not bounded.

We assume that:

∀ c, R > 0 ∃ uc,R solution of(E) such that:

Rn−2 sup
B(x0,R)

uc,R × inf
M
uc,R ≥ c. (H)

Proposition 2:

There exist a sequence of points(yi)i, yi → x0 and two sequences of positive real number

(li)i, (Li)i, li → 0, Li → +∞, such that if we considervi(y) =
ui[expyi

(y)]

ui(yi)
, we have:

i) 0 < vi(y) ≤ βi ≤ 2(n−2)/2, βi → 1.

ii) vi(y) →
(

1

1 + |y|2
)(n−2)/2

, uniformly on every compact set of R
n.

iii) l
(n−2)/2
i [ui(yi)] × inf

M
ui → +∞

Proof:
We use the hypothesis(H). We can take two sequencesRi > 0, Ri → 0 andci → +∞, such

that,

Ri
(n−2) sup

B(x0,Ri)

ui × inf
M
ui ≥ ci → +∞.

Let,xi ∈ B(x0, Ri), such thatsupB(x0,Ri) ui = ui(xi) andsi(x) = [Ri−d(x, xi)]
(n−2)/2ui(x), x ∈

B(xi, Ri). Then,xi → x0.

We have,

max
B(xi,Ri)

si(x) = si(yi) ≥ si(xi) = Ri
(n−2)/2ui(xi) ≥

√
ci → +∞.

Set :

li = Ri − d(yi, xi), ūi(y) = ui[expyi
(y)], vi(z) =

ui[expyi

(

z/[ui(yi)]
2/(n−2)

)

]

ui(yi)
.

Clearly,yi → x0. We obtain:

Li =
li

(ci)1/2(n−2)
[ui(yi)]

2/(n−2) =
[si(yi)]

2/(n−2)

c
1/2(n−2)
i

≥ c
1/(n−2)
i

c
1/2(n−2)
i

= c
1/2(n−2)
i → +∞.

8



If |z| ≤ Li, theny = expyi
[z/[ui(yi)]

2/(n−2)] ∈ B(yi, δili) with δi =
1

(ci)1/2(n−2)
and

d(y, yi) < Ri − d(yi, xi), thus,d(y, xi) < Ri and,si(y) ≤ si(yi), we can write,

ui(y)[Ri − d(y, yi)]
(n−2)/2 ≤ ui(yi)(li)

(n−2)/2.

But,d(y, yi) ≤ δili,Ri > li andRi −d(y, yi) ≥ Ri − δili > li − δili = li(1− δi), we obtain,

0 < vi(z) =
ui(y)

ui(yi)
≤
[

li
li(1 − δi)

](n−2)/2

≤ 2(n−2)/2.

We set,βi =

(

1

1 − δi

)(n−2)/2

, clearlyβi → 1.

The functionvi is solution of:

−gjk[expyi
(y)]∂jkvi − ∂k

[

gjk
√

|g|
]

[expyi
(y)]∂jvi +

Rg[expyi
(y)]

[ui(yi)]4/(n−2)
vi = n(n− 2)vi

N−1,

By elliptic estimates and Ascoli, Ladyzenskaya theorems,(vi)i converge uniformely on each
compact to the functionv solution onR

n of,

∆v = n(n− 2)vN−1, v(0) = 1, 0 ≤ v ≤ 1 ≤ 2(n−2)/2,

By using maximum principle, we havev > 0 on R
n, the result of Caffarelli-Gidas-Spruck

( see [C-G-S]) give,v(y) =

(

1

1 + |y|2
)(n−2)/2

. We have the same properties forvi in the

previous paper [B2].

Polar coordinates and ”moving-plane” method

Let,

wi(t, θ) = e(n−2)/2ūi(e
t, θ) = e(n−2)t/2uio expyi

(etθ), et a(yi, t, θ) = log J(yi, e
t, θ).

Lemma 1:

The functionwi is solution of:

−∂ttwi − ∂ta∂twi − Lθ(yi, e
t) + cwi = n(n− 2)wN−1

i ,

with,

c = c(yi, t, θ) =

(

n− 2

2

)2

+
n− 2

2
∂ta− λe2t,

Proof:
We write:

∂twi = ent/2∂rūi +
n− 2

2
wi, ∂ttwi = e(n+2)t/2

[

∂rrūi +
n− 1

et
∂rūi

]

+

(

n− 2

2

)2

wi.

∂ta = et∂r log J(yi, e
t, θ), ∂ta∂twi = e(n+2)t/2 [∂r log J∂rūi] +

n− 2

2
∂tawi.

the lemma is proved.

Now we have,∂ta =
∂tb1
b1

, b1(yi, t, θ) = J(yi, e
t, θ) > 0,

We can write,

− 1√
b1
∂tt(
√

b1wi) − Lθ(yi, e
t)wi + [c(t) + b

−1/2
1 b2(t, θ)]wi = n(n− 2)wi

N−1,

9



where,b2(t, θ) = ∂tt(
√
b1) =

1

2
√
b1
∂ttb1 −

1

4(b1)3/2
(∂tb1)

2.

Let,

w̃i =
√

b1wi,

Lemma 2:
The functionw̃i is solution of:

−∂ttw̃i + ∆gyi,et,Sn−1

(w̃i) + 2∇θ(w̃i).∇θ log(
√

b1) + (c+ b
−1/2
1 b2 − c2)w̃i =

= n(n− 2)

(

1

b1

)(N−2)/2

w̃N−1
i ,

where,c2 = [
1√
b1

∆gyi,et,Sn−1

(
√
b1) + |∇θ log(

√
b1)|2].

Proof:

We have:

−∂ttw̃i −
√

b1∆gyi,et,Sn−1

wi + (c+ b2)w̃i = n(n− 2)

(

1

b1

)(N−2)/2

w̃N−1
i ,

But,

∆g
yi,et,Sn−1

(
√

b1wi) =
√

b1∆g
yi,et,Sn−1

wi − 2∇θwi.∇θ

√

b1 + wi∆g
yi,et,Sn−1

(
√

b1),

and,

∇θ(
√

b1wi) = wi∇θ

√

b1 +
√

b1∇θwi,

we deduce than,

√

b1∆gyi,et,Sn−1

wi = ∆gyi,et,Sn−1

(w̃i) + 2∇θ(w̃i).∇θ log(
√

b1) − c2w̃i,

with c2 = [
1√
b1

∆gyi,et,Sn−1

(
√
b1) + |∇θ log(

√
b1)|2]. The lemma is proved.

The ”moving-plane” method:

Let ξi a real number, and supposeξi ≤ t. We settξi = 2ξi − t andw̃ξi

i (t, θ) = w̃i(t
ξi , θ).

We have,

−∂ttw̃
ξi

i +∆g
yi,etξi

Sn−1

(w̃i)+2∇θ(w̃
ξi

i ).∇θ log(
√

b1)w̃
ξi

i +[c(tξi)+b
−1/2
1 (tξi , .)b2(t

ξi)−cξi

2 ]w̃ξi

i =

= n(n− 2)

(

1

bξi

1

)(N−2)/2

(w̃ξi

i )
N−1

.

By using the same arguments than in [B2], we have:

Proposition 3:
We have:

1) w̃i(λi, θ) − w̃i(λi + 4, θ) ≥ k̃ > 0, ∀ θ ∈ Sn−1.

For allβ > 0, there existcβ > 0 such that:

2)
1

cβ
e(n−2)t/2 ≤ w̃i(λi + t, θ) ≤ cβe

(n−2)t/2, ∀ t ≤ β, ∀ θ ∈ Sn−1.

We set,
10



Z̄i = −∂tt(...) + ∆gyi,et,Sn−1

(...) + 2∇θ(...).∇θ log(
√

b1) + (c+ b
−1/2
1 b2 − c2)(...)

Remark: In the operatorZ̄i, by using the proposition 3, the coeficientc + b
−1/2
1 b2 − c2

satisfies:

c+ b
−1/2
1 b2 − c2 ≥ k′ > 0, pour t << 0,

it is fundamental if we want to apply Hopf maximum principle.

Goal:

Like in [B2], we have elliptic second order operator. Here itis Z̄i, the goal is to use the
”moving-plane” method to have a contradiction. For this, wemust have:

Z̄i(w̃
ξi

i − w̃i) ≤ 0, if w̃ξi

i − w̃i ≤ 0.

We write:

Z̄i(w̃
ξi

i − w̃i) = (∆g
yi,etξi ,Sn−1

− ∆gyi,et,Sn−1

)(w̃ξi

i )+

+2(∇
θ,etξi −∇θ,et)(wξi

i ).∇
θ,etξi log(

√

bξi

1 ) + 2∇θ,et(w̃ξi

i ).∇
θ,etξi [log(

√

bξi

1 ) − log
√

b1]+

+2∇θ,etwξi

i .(∇θ,etξi −∇θ,et) log
√

b1 − [(c+ b
−1/2
1 b2 − c2)

ξi − (c+ b
−1/2
1 b2 − c2)]w̃

ξi

i +

+n(n− 2)

(

1

bξi

1

)(N−2)/2

(w̃ξi

i )N−1 − n(n− 2)

(

1

b1

)(N−2)/2

w̃N−1
i . (∗ ∗ ∗1)

Clearly, we have:

Lemma 3 :

b1(yi, t, θ) = 1 − 1

3
Ricciyi

(θ, θ)e2t + . . . ,

Rg(e
tθ) = Rg(yi)+ < ∇Rg(yi)|θ > et + . . . .

According to proposition 1 and lemma 3,

Propostion 4 :

Z̄i(w̃
ξi

i − w̃i) ≤ b1
(2−N)/2[(w̃ξi

i )N−1 − w̃N−1
i ]+

+C|e2t−e2tξi |
[

|∇θw̃
ξi

i | + |∇2
θ(w̃

ξi

i )| + |Ricciyi
|[w̃ξi

i + (w̃ξi

i )N−1] + |Rg(yi)|w̃ξi

i

]

+C′|e3tξi−e3t|.

Proof:

We use proposition 1, we have:

a(yi, t, θ) = log J(yi, e
t, θ) = log b1, |∂tb1(t)| + |∂ttb1(t)| + |∂tta(t)| ≤ Ce2t,

and,

|∂θj
b1| + |∂θj,θk

b1| + ∂t,θj
b1| + |∂t,θj,θk

b1| ≤ Ce2t,

then,

|∂tb1(t
ξi) − ∂tb1(t)| ≤ C′|e2t − e2tξi |, on ] −∞, log ǫ1] × Sn−1, ∀ x ∈ B(x0, ǫ1)

Locally,
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∆gyi,et,Sn−1

= Lθ(yi, e
t) = − 1

√

|g̃k(et, θ)|
∂θl [g̃θlθj

(et, θ)
√

|g̃k(et, θ)|∂θj ].

Thus, in[0, ǫ1] × Uk, we have,

Ai =





[

1
√

|g̃k|
∂θl(g̃θlθj

√

|g̃k|∂θj )

]ξi

− 1
√

|g̃k|
∂θl(g̃θlθj

√

|g̃k|∂θj )



 (w̃ξi

i )

then,Ai = Bi +Di with,

Bi =
[

g̃θlθj

(etξi
, θ) − g̃θlθj

(et, θ)
]

∂θlθj w̃ξi

i (t, θ),

and,

Di =

[

1
√

|g̃k|(etξi , θ)
∂θl [g̃θlθj

(etξi
, θ)
√

|g̃k|(etξi
, θ)] − 1

√

|g̃k|(et, θ)
∂θl [g̃θlθj

(et, θ)
√

|g̃k|(et, θ)]

]

∂θj w̃ξi

i (t, θ),

we deduce,

Ai ≤ Ck|e2t − e2tξi |
[

|∇θw̃
ξi

i | + |∇2
θ(w̃

ξi

i )|
]

,

If we takeC = max{Ci, 1 ≤ i ≤ q} and if w use(∗ ∗ ∗1), we obtain proposition 4.
We have,

c(yi, t, θ) =

(

n− 2

2

)2

+
n− 2

2
∂ta+Rge

2t, (α1)

b2(t, θ) = ∂tt(
√

b1) =
1

2
√
b1
∂ttb1 −

1

4(b1)3/2
(∂tb1)

2, (α2)

c2 = [
1√
b1

∆gyi,et,Sn−1

(
√

b1) + |∇θ log(
√

b1)|2], (α3)

Then,

∂tc(yi, t, θ) =
(n− 2)

2
∂tta+ 2e2tRg(e

tθ) + e3t < ∇Rg(e
tθ)|θ >,

by proposition 1,

|∂tc2| + |∂tb1| + |∂tb2| + |∂tc| ≤ K1e
2t,

The case:0 < m ≤ λ+Rg ≤ 1

m
for the equation ∆u− λu = n(n− 2)uN−1

Let x0 a point ofM , we consider a conformal change of metricg̃ = ϕ4/(n−2)g such that,
R̃icci(x0) = 0. See for example [Au] ( also Lee and Parker [L,P]).

We are concerning by the following equation,

∆gu− λu = n(n− 2)uN−1,

the conformal change of metric give when we setv = u/ϕ,

∆g̃v + R̃g̃v = n(n− 2)vN−1 + (λ+ R̃g)ϕ
N−2v.

The notationR̃ is for
n− 2

4(n− 1)
R andR = Rg orR = Rg̃.

Our calculus for the metric̃g are the same that for the metricg. But we have some new
properties:

√

det(g̃yi,jk) = 1 − 1

3
R̃icci(yi)(θ, θ)r

2 + ..., and R̃g̃(yi) → 0, R̃icci(yi) → 0.

12



If we see the coeficient in the terme2tξi − e2t, we can say that all those terms are tending to 0,
see proposition 4. Only the term(λ+ R̃g)(e

2tξi − e2t) ≤ m(e2tξ − e2t) ( m > 0), is the biggest.

In fact, the increment of the local expression of the metricg̃ξi

jk− g̃jk, have terms of type∂θj
w̃ξi

i

et ∂θj,θk
w̃ξi

i but we know by proposition 2 that those terms tend to 0 becausethe limit function
is radial and do not depend on the angles.

We apply proposition 3. We taketi = log
√
li with li like in proposition 2. The fact

√
li[ui(yi)]

2/(n−2) → +∞ ( see proposition 2), impliesti = log
√
li >

2

n− 2
log ui(yi) + 2 =

λi + 2. Finaly, we can work on] −∞, ti].

We defineξi by:

ξi = sup{λ ≤ λi + 2, w̃i(2λ− t, θ) − w̃i(t, θ) ≤ 0 on [λ, ti] × Sn−1}.
If we use proposition 4 and the similar technics that in [B2] we can deduce by Hopf maximum

principle,

max
Sn−1

w̃i(ti, θ) ≤ min
Sn−1

w̃i(2ξi − ti, θ),

which implies,

li
(n−2)/2ui(yi) × min

M
ui ≤ c.

It is in contradiction with proposition 2.

Then we have,

sup
K
u× inf

M
u ≤ c = c(K,M,m, g, n).

Application:

LetM a Riemannian manifold of dimensionn ≥ 3, and consider a sequence of functionsui

such that:

∆ui + ǫiui = n(n− 2)ui
N−1, ǫi → 0

If, the scalar curvatureRg ≥ m > 0 onM , then, applying the previous result withλ = −ǫi,
we obtain:

sup
M

ui × inf
M
ui ≤ c, ∀ i,

Proof of the theorem 4:
Without loss of generality we suppose,

∆ui + ǫiui = uN−1
i , et max

M
ui → 0.

Lemma 1: There exist a positive constant,c such that:

sup
M

ui ≤ c inf
M
ui, ∀ i.

Proof of lemma 1:

Suppose by contradiction:

lim sup
i→+∞

supM ui

infM ui
= +∞,

After passing to a subsequence, we can assume:
supM ui

infM ui
→ +∞.

We have,supM ui = ui(yi) et infM ui = ui(xi). We also suppose,xi → x etyi → y.
13



Let L be a minimizing curve betweenx andy, takeδ > 0 such thatδ < injg(M), with
injg(M) the injectivity radius of the compact manifoldM .

For all a ∈ L, [B(a, δ), (expa)−1] is a local chart arounda, butL is compact. We can cover
this curve by a finite number of balls centred in a points ofL and of radiusδ/5. Let a1, . . . , ak

those points, with,a1 = x andak = y.

In each ballB(aj , δ), ui is solution of,∆ui+(ǫi−uN−2
i )ui = 0, we use the factsupM ui → 0

and we apply the Harnack inequality of [G-T] ( see theorem 8.20), we obtain:

sup
B(aj ,δ/5)

ui ≤ Cj inf
B(aj ,δ/5)

ui, j = 1, . . . , k.

We deduce:

sup
B(y,δ/5)

ui ≤ CkCk−1. . . . .C1 inf
B(x,δ/5)

ui,

In other words:

sup
M

ui ≤ Ck. . . . .C1 inf
M
ui.

It’s in contradiction with our hypothesis.

Lemma 2: There exist two constants,k1, k2 > 0 such that:

k1ǫi
(n−2)/4 ≤ ui(x) ≤ k2ǫi

(n−2)/4, ∀ x ∈M, ∀ i.
Proof of lemma 2:

LetGi the Green function of the operator∆ + ǫi, this equation satisfies:
∫

M

Gi(x, y)dVg(y) =
1

ǫi
, ∀ x ∈M.

We write:

inf
M
ui = ui(xi) =

∫

M

Gi(xi, y)u
N−1
i (y)dVg(y) ≥ (inf

M
ui)

N−1

∫

M

Gi(xi, y)dVg(y) =
(infM ui)

N−1

ǫi
,

thus,

inf
M
ui ≤ ǫi

(n−2)/4.

We the same idea we can prove,supM ui ≥ ǫi
(n−2)/4. We deduce lemma 2 from lemma 1

and the two last inequalities.

Lemma 3: There exist a ranki0 such that,ui ≡ ǫi
(n−2)/4. for i ≥ i0.

Proof of lemma 3:

Let,wi =
ui

ǫi(n−2)/4
. This function is solution of:

∆wi = ǫi(w
N−1
i − wi) = ǫiwi(w

N−2
i − 1). (∗)

Case 1:N − 2 ≥ 1 (3 ≤ n ≤ 6),
To simplify our computations we suppose thatN − 2 is an integer.

According to binomial formula,wN−2
i −1 = (wi−1)(1+wi + ...), we multiply(∗) bywi−1

and we integrate, we obtain:
∫

M

|∇wi|2 ≤ Cǫi

∫

M

|wi − 1|2,

Suppose that we have infinityi, such thatwi 6≡ 1, then we can consider the following func-

tions:zi =
wi − 1

||wi − 1||2
.
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zi verifiy, ||zi||2 = 1, ||∇zi||22 ≤ Cǫi → 0, thus, zi → 1 in L2(M) and in particular,
∫

M ziwi(1 + wi + ...) → C′ 6= 0 ( by using lemma 2). But, if we integrate(∗), we find
∫

M ziwi(1 + wi + ....) = 0, it’s a contradiction.

Thus, there exist a rank such thatwi ≡ 1 after this rank.

Case 2:0 < N − 2 < 1 ( n ≥ 7):

To simplify our computations, we suppose that1/(N − 2) is an integer.

Now we takewN−2
i − 1 and we writewi − 1 = (wN−2

i )1/(N−2) − 1, by using the binomial
formula and the same ideas than in the previous case we obtainour result.
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[B-V, V] M-F. Bidaut-Véron, L. Véron. Nonlinear ellipticequations on compact Riemannian
manifolds and asymptotics od Emden equations. Invent.Math. 106 (1991), no3, 489-539.

[C-G-S], L. Caffarelli, B. Gidas, J. Spruck. Asymptotic symmetry and local behavior of semi-
linear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 37 (1984)
369-402.

[C-L 1] A sharp sup+inf inequality for a nonlinear elliptic equation inR
2. Commun. Anal.

Geom. 6, No.1, 1-19 (1998).

[C-L 2] C-C.Chen, C-S. Lin. Estimates of the conformal scalar curvature equation via the
method of moving planes. Comm. Pure Appl. Math. L(1997) 0971-1017.

[D-H-R] O. Druet, E. Hebey, F.Robert, Blow-up theory in Riemannian Geometry, Princeton
University Press.

[He] E. Hebey, Analyse non lineaire sur les Variété, Editions Diderot.
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