224 research outputs found

    Local immune regulation of mucosal inflammation by Tacrolimus

    Get PDF
    PURPOSE: Tacrolimus is a potent immunomodulator that is effective in the treatment of inflammatory bowel disease (IBD). However, potential toxicity and systemic effects with oral intake limit its use. Local tacrolimus treatment is effective in a subgroup of proctitis patients. This study aimed to evaluate whether colonic mucosal immune cells are susceptible to locally applied tacrolimus in vitro. Our in vivo studies aimed at evaluating whether local tacrolimus treatment in mice would bring about local immune suppression and to compare colonic and systemic tacrolimus levels after locally and systemically applied tacrolimus. RESULTS: In vitro tacrolimus inhibited the activation of multiple cell types present in colonic tissue; lamina propria T cells, NKT cells, and both classical- and non- classical antigen presenting cells. However, the cytokine production of epithelial cells was not inhibited by tacrolimus at these concentrations. After rectal administration in mice, tacrolimus blood levels were comparable to those obtained by oral intake. However, rectally treated mice exhibited a 14-fold higher concentration of tacrolimus within their colonic tissue than orally treated mice. Moreover, rectally applied tacrolimus resulted in a local but not a systemic immune suppression in mice. CONCLUSIONS: Tacrolimus inhibits activation of several pivotal immune cells of the intestinal mucosa. Murine studies indicate that colonic application of tacrolimus induces local rather than systemic immune suppression

    Anti-Tumour Necrosis Factor Therapy for Paediatric Crohn’s Disease: Improved Benefits Through Treatment Optimisation, Deeper Understanding of Its Risks, and Reduced Costs due to Biosimilar Availability

    Get PDF
    Antibodies directed to tumour necrosis factor-α (TNF-α) are very effective in treating paediatric Crohn’s disease (CD). Over the last few years, research has provided important new insights into how to optimise this treatment’s effectiveness. Research on predictors for anti-TNF treatment responsiveness has revealed potential markers, but data on their accuracy in paediatric CD patients are lagging behind. Also, new evidence has become available on the safety profile of anti-TNF antibodies that suggests the assumed increased malignancy risk seen in patients on anti-TNF and thiopurine combination treatment may be linked more to thiopurine use and not to anti-TNF treatment. In addition, the early results of CT-P13, an infliximab biosimilar, in CD patients confirm the expected similarity with its originator. Thus, the effectiveness of anti-TNF antibody treatment is slowly improving, its malignancy risk is lower than assumed, and its costs are reduced by the introduction of equally effective biosimilars. Together, these trends allow for a more prominent role for anti-TNF antibodies in future treatment of paediatric CD

    Serum Immune Profiling in Paediatric Crohn's Disease Demonstrates Stronger Immune Modulation With First-Line Infliximab Than Conventional Therapy and Pre-Treatment Profiles Predict Clinical Response to Both Treatments

    Get PDF
    BACKGROUND: Despite its efficacy, rational guidance for starting/stopping first-line biologic treatment in individual paediatric Crohn's disease [CD] patients is needed. We assessed how serum immune profiles before and after first-line infliximab [FL-IFX] or conventional [CONV] induction therapy associate with disease remission at week 52. METHODS: Pre- [n = 86], and 10-14-week post-treatment [n = 84] sera were collected from patients with moderate-to-severe paediatric CD in the TISKids trial, randomized to FL-IFX [n = 48; five 5-mg/kg infusions over 22 weeks] or CONV [n = 43; exclusive enteral nutrition or oral prednisolone]; both groups received azathioprine maintenance. The relative concentrations of 92 inflammatory proteins were determined with Olink Proteomics; fold changes [FC] with |log2FC| &gt; 0.5 after false discovery rate adjustment were considered significant. RESULTS: FL-IFX modulated a larger number of inflammatory proteins and induced stronger suppression than CONV; 18/30 proteins modulated by FL-IFX were not regulated by CONV. Hierarchical clustering based on IFX-modulated proteins at baseline revealed two clusters of patients: CD-hi patients had significantly higher concentrations of 23/30 IFX-modulated proteins [including oncostatin-M, TNFSF14, HGF and TGF-α], and higher clinical disease activity, C-reactive protein and blood neutrophils at baseline than CD-lo patients. Only 24% of CD-hi FL-IFX-treated patients maintained remission without escalation at week 52 vs 58% of CD-lo FL-IFX-treated patients. Similarly, 6% of CD-hi CONV-treated patients achieved remission vs 20% of CONV-treated CD-lo patients. Clustering based on immune profiles post-induction therapy did not relate to remission at week 52. CONCLUSION: FL-IFX leads to stronger reductions and modulates more immune proteins than CONV. Stratification on pre-treatment profiles of IFX-modulated proteins directly relates to maintenance of remission without treatment escalation. TRIAL REGISTRATION NUMBER: NCT02517684.</p

    Yap1-Driven Intestinal Repair Is Controlled by Group 3 Innate Lymphoid Cells

    Get PDF
    Intestinal repair is driven by epithelial stem cells, but how these stem cells are instructed to initiate repair was unknown. Here, Romera-HernĂĄndez et al. report that epithelial proliferation after damage is independent of the stem cell-protective signal IL-22 but requires ILC3-dependent amplification of regenerative YAP1 signaling in stem cells.Tissue repair requires temporal control of progenitor cell proliferation and differentiation to replenish damaged cells. In response to acute insult, group 3 innate lymphoid cells (ILC3s) regulate intestinal stem cell maintenance and subsequent tissue repair. ILC3-derived IL-22 is important for stem cell protection, but the mechanisms of ILC3-driven tissue regeneration remain incompletely defined. Here we report that ILC3-driven epithelial proliferation and tissue regeneration are independent of IL-22. In contrast, ILC3s amplify the magnitude of Hippo-Yap1 signaling in intestinal crypt cells, ensuring adequate initiation of tissue repair and preventing excessive pathology. Mechanistically, ILC3-driven tissue repair is Stat3 indepe
    • 

    corecore