141 research outputs found

    The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells

    Get PDF
    International audienceEmbryonic stem cells ( ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self- renew has been shown to be governed by the transcription factors Oct4 ( Pou5f1) and Nanog. Oct4 appears to control cell- fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In nonmammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 ( spg; pou5f1) and Xenopus Pou91 ( XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC ( cESC), which display similar properties of pluripotency and long- term self- renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV ( cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self- renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self- renewal are not exclusive to mammal

    Thyroid Hormone Receptor Beta in the Ventromedial Hypothalamus Is Essential for the Physiological Regulation of Food Intake and Body Weight.

    Get PDF
    The obesity epidemic is a significant global health issue. Improved understanding of the mechanisms that regulate appetite and body weight will provide the rationale for the design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis through their interaction with thyroid hormone receptors (TRs), which function as ligand-inducible transcription factors. The TR-beta isoform (TRβ) is expressed in the ventromedial hypothalamus (VMH), a brain area important for control of energy homeostasis. Here, we report that selective knockdown of TRβ in the VMH of adult mice results in severe obesity due to hyperphagia and reduced energy expenditure. The observed increase in body weight is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. These data identify TRβ in the VMH as a major physiological regulator of food intake and energy homeostasis

    Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties

    Get PDF
    The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs

    The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized <it>in vitro </it>and <it>in vivo </it>the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells.</p> <p>Results</p> <p>We show that <it>Ens-1 </it>LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the <it>Ens-1 </it>gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of <it>Ens-1</it>.</p> <p>Conclusion</p> <p>Our results show that <it>Ens-1 </it>LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, <it>Ens-1 </it>LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.</p

    Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types

    Get PDF
    In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARδ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARδ

    v-jun cooperates with v-erbB to transform the thrombocytic/megakaryocytic lineage.

    No full text
    corecore