865 research outputs found

    Squeezing on momentum states for atom interferometry

    Full text link
    We propose and analyse a method that allows for the production of squeezed states of the atomic center-of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in a ring resonator on a narrow transition of strontium atoms in order to provide a collective measurement of the relative population of two momentum states. We show that this method is applicable to a Bragg diffraction-based atom interferometer with large diffraction orders. The applicability of this technique can be extended also to small diffraction orders and large atom numbers by inducing atomic transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling ΔϕN3/4\Delta\phi\sim N^{-3/4}, where NN is the atom number. We show that for realistic parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the Standard Quantum Limit.Comment: 5 pages, 4 figure

    Bragg gravity-gradiometer using the 1^1S0_0-3^3P1_1 intercombination transition of 88^{88}Sr

    Get PDF
    We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely 88^{88}Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow 1^1S0_0-3^3P1_1 intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches 1.5×1051.5 \times 10^{-5} s2^{-2} for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 105^{5} times lower than the sensitivity of alkali-atom based gradiometers. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.Comment: 10 pages, 7 figure

    ANÁLISE DA RESISTÊNCIA À COMPRESSÃO DO CONCRETO UTILIZANDO CIMENTOS COMERCIALIZADOS NO MUNICÍPIO DE CHAPECÓ/SC

    Get PDF

    Canceling the cavity length induced phase noise in an optical ring cavity for phase shift measurement and spin squeezing

    Get PDF
    We demonstrate a new method of light phase shift measurement using a high-finesse optical ring cavity which exhibits reduced phase noise due to cavity length fluctuations. Two laser beams with a frequency difference of one cavity free spectral range are simultaneously resonant with the cavity, demonstrating noise correlations in the error signals due to the common-mode cavity length fluctuations. The differential error signal shows a 30 dB reduction in cavity noise down to the noise floor in a frequency range up to half the cavity linewidth (δν/230\delta\nu/2 \simeq 30 kHz). Various noise sources are analyzed and their contributions to the noise floor are evaluated. Additionally, we apply this noise-reduced phase shift measurement scheme in a simulated spin-squeezing experiment where we have achieved a factor of 40 improvement in phase sensitivity with a phase resolution of 0.7 mrad, which may remove one important barrier against attaining highly spin-squeezed states. The demonstrated method is the first reported measurement using an optical ring cavity and two independent beams, a flexible situation. This method can find direct application to non-destructive measurements in quantum systems, such as for the generation of spin-squeezed states in atom interferometers and atomic clocks.Comment: 9 pages, 5 figure

    Squeezed state metrology with Bragg interferometers operating in a cavity

    Get PDF
    Bragg interferometers, operating using pseudospin-1/2 systems composed of two momentum states, have become a mature technology for precision measurements. State-of-the-art Bragg interferometers are rapidly surpassing technical limitations and are soon expected to operate near the projection noise limit set by uncorrelated atoms. Despite the use of large numbers of atoms, their operation is governed by single-atom physics. Motivated by recent proposals and demonstrations of Raman gravimeters in cavities, we propose a scheme to squeeze directly on momentum states for surpassing the projection noise limit in Bragg interferometers. In our modeling, we consider the unique issues that arise when a spin squeezing protocol is applied to momentum pseudospins. Specifically, we study the effects of the momentum width of the atomic cloud and the coupling to momentum states outside the pseudospin manifold, as these atoms interact via a mode of the cavity.Weshow that appreciable levels of spin squeezing can be demonstrated in suitable parameter regimes in spite of these complications. Using this setting, we show how beyond mean-field techniques developed for spin systems can be adapted to study the dynamics of momentum states of interacting atoms. Our scheme promises to be feasible using current technology and is experimentally attractive because it requires no additional setup beyond what will be required to operate Bragg interferometers in cavities

    Near-Unitary Spin Squeezing in 171^{171}Yb

    Full text link
    Spin squeezing can improve atomic precision measurements beyond the standard quantum limit (SQL), and unitary spin squeezing is essential for improving atomic clocks. We report substantial and nearly unitary spin squeezing in 171^{171}Yb, an optical lattice clock atom. The collective nuclear spin of 103\sim 10^3 atoms is squeezed by cavity feedback, using light detuned from the system's resonances to attain unitarity. The observed precision gain over the SQL is limited by state readout to 6.5(4) dB, while the generated states offer a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a squeezed state within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2). In the future, the squeezing can be simply transferred onto the optical clock transition of 171^{171}Yb.Comment: 5 pages, 4 figure

    Sr atom interferometry with the optical clock transition as a gravimeter and a gravity gradiometer

    Get PDF
    We characterize the performance of a gravimeter and a gravity gradiometer based on the 1^{1}S0_{0}-3^3P0_0 clock transition of strontium atoms. We use this new quantum sensor to measure the gravitational acceleration with a relative sensitivity of 1.7×1051.7\times10^{-5}, representing the first realisation of an atomic interferometry gravimeter based on a single-photon transition. Various noise contributions to the gravimeter are measured and characterized, with the current primary limitation to sensitivity seen to be the intrinsic noise of the interferometry laser itself. In a gravity gradiometer configuration, a differential phase sensitivity of 1.53~rad/Hz\sqrt{Hz} was achieved at an artificially introduced differential phase of π/2\pi/2~rad. We experimentally investigated the effects of the contrast and visibility based on various parameters and achieve a total interferometry time of 30~ms, which is longer than previously reported for such interferometers. The characterization and determined limitations of the present apparatus employing 88^{88}Sr atoms provides a guidance for the future development of large-scale clock-transition gravimeters and gravity gradiometers with alkali-earth and alkali-earth-like atoms (e.g., 87^{87}Sr, Ca, Yb).Comment: 32 pages, 14 figure
    corecore