810 research outputs found
Comfort properties and dyeing behaviour of cotton/milkweed blended rotor yarn fabrics
Milkweed (M) fibres have been blended with cotton (C) fibres at three different proportions and the rotor-spun yarn fabrics are produced. The comfort properties of 100% cotton and C/M blended fabrics are analysed. The fabrics have been dyed with two types of reactive dyes, namely CI Reactive Yellow 3RS and CI Reactive Red 120, and the colour strength and other calorimetric parameters of the dyeing are analysed. From the comfort properties of the fabrics, it is noticed that the air and water vapour permeabilities of C/M blended fabrics are lower than the 100% cotton fabric and decrease with the increase in milkweed proportion. The thermal conductivity of C/M blended fabrics is lower than 100% cotton fabric and decreases with the increase in milkweed proportion. The reduction in inter-yarn space and higher yarn hairiness leads to reduction in air, water and thermal conductivity values with the increase in milkweed proportion. The wickability of C/M blended fabrics increases with milkweed proportion due to the open yarn structure and hollowness of milkweed fibres. From the dyeing behaviour of fibres, it is observed that the colour strength of C/M 80/20 is higher than 100% cotton and it decreases with the further increase in milkweed blend proportion. The low cellulose percentage, higher crystalline orientation index of milkweed fibres compared to cotton results in lower colour strength values with milkweed percentage greater than 20%
Extraction and characterization of fibre from musa plant bract
191-194An attempt has been made to extract the fibres from banana bracts which have several advantages in terms of environmental friendliness, sustainability and converting the waste into wealth. The banana bract fibres are extracted through mechanical and chemical treatments. The fibre characteristics, such as length, fibre strength, fibre elongation, and moisture regain, has been tested and analyzed. The bract fibre yield percentage varies from 1.02 to 1.84. Most of the bract fibres possess 14 - 24 cm length, which is sufficient to produce textile staple spun yarn. The banana bract fibre has the moisture regain of 8.51-11.63%. The fibre length, tensile strength, fibre elongation and moisture properties of the banana bract fibre show that the bract fibre can be used as raw materials for the production of biodegradable yarn. The 6s Ne rotor staple spun yarns has been successfully produced from bract fibre using miniature lab model rotor spinning machine
Extraction and characterization of fibre from musa plant bract
An attempt has been made to extract the fibres from banana bracts which have several advantages in terms of environmental friendliness, sustainability and converting the waste into wealth. The banana bract fibres are extracted through mechanical and chemical treatments. The fibre characteristics, such as length, fibre strength, fibre elongation, and moisture regain, has been tested and analyzed. The bract fibre yield percentage varies from 1.02 to 1.84. Most of the bract fibres possess 14 - 24 cm length, which is sufficient to produce textile staple spun yarn. The banana bract fibre has the moisture regain of 8.51-11.63%. The fibre length, tensile strength, fibre elongation and moisture properties of the banana bract fibre show that the bract fibre can be used as raw materials for the production of biodegradable yarn. The 6s Ne rotor staple spun yarns has been successfully produced from bract fibre using miniature lab model rotor spinning machine
Soluble CD200 Correlates With Interleukin-6 Levels in Sera of COPD Patients: Potential Implication of the CD200/CD200R Axis in the Disease Course
BACKGROUND: COPD represents a multifactorial lung disorder with high morbidity and mortality. Despite intensive research concerning the underlying disease mechanisms, the involvement of the CD200/CD200R axis in supporting or preventing the onset of COPD has not yet been addressed. Since the CD200/CD200R axis is crucially implicated in the maintenance of pulmonary immune homeostasis, we hypothesized that it might be involved in controlling the onset of COPD. METHODS: To address this, we analyzed the serum samples from COPD patients and normal controls for soluble (s) CD200 and correlated the data to COPD-relevant clinical parameters. In addition, basic studies were conducted in CD200-deficient and wild-type mice in which COPD-like inflammation was induced with elastase/LPS followed by lung and serum component analysis. RESULTS: We observed a positive correlation between serum sCD200 and IL-6 levels as well as a trend toward a negative correlation of sCD200 with vitamin D3 in COPD patients. Further investigations in mice revealed that despite elevated serum concentration of MMP-9 in CD200KO mice, the early onset of COPD-like lung inflammation was similar in CD200-deficient and wild-type animals in terms of immune cell infiltration, emphysematous changes, and mucus overproduction. CONCLUSIONS: While our murine studies suggest that the co-inhibitory molecule CD200 does not appear to play a prominent role in the early onset of COPD-like features, correlation of sCD200 serum levels with COPD-related parameters in humans with established disease revealed that the CD200/CD200R axis may be mechanistically linked to the disease course in COPD patients
Reversible melting and equilibrium phase formation of (Bi,Pb)2Sr2Ca2Cu3O10+d
The decomposition and the reformation of the (Bi,Pb)2Sr2Ca2Cu3O10+d
(?Bi,Pb(2223)?) phase have been investigated in-situ by means of
High-Temperature Neutron Diffraction, both in sintered bulk samples and in
Ag-sheathed monofilamentary tapes. Several decomposition experiments were
performed at various temperatures and under various annealing atmospheres,
under flowing gas as well as in sealed tubes, in order to study the appropriate
conditions for Bi,Pb(2223) formation from the melt. The Bi,Pb(2223) phase was
found to melt incongruently into (Ca,Sr)2CuO3, (Sr,Ca)14Cu24O41 and a
Pb,Bi-rich liquid phase. Phase reformation after melting was successfully
obtained both in bulk samples and Ag-sheathed tapes. The possibility of
crystallising the Bi,Pb(2223) phase from the melt was found to be extremely
sensitive to the temperature and strongly dependent on the Pb losses. The study
of the mass losses due to Pb evaporation was complemented by thermogravimetric
analysis which proved that Pb losses are responsible for moving away from
equilibrium and therefore hinder the reformation of the Bi,Pb(2223) phase from
the melt. Thanks to the full pattern profile refinement, a quantitative phase
analysis was carried out as a function of time and temperature and the role of
the secondary phases was investigated. Lattice distortions and/or transitions
were found to occur at high temperature in Bi,Pb(2223), Bi,Pb(2212),
(Ca,Sr)2CuO3 and (Sr,Ca)14Cu24O41, due to cation diffusion and stoichiometry
changes. The results indicate that it is possible to form the Bi,Pb(2223) phase
from a liquid close to equilibrium conditions, like Bi(2212) and Bi(2201), and
open new unexplored perspectives for high-quality Ag-sheathed Bi,Pb(2223) tape
processing.Comment: 45 pages (including references,figures and captions), 13 figures
Submitted to Supercond. Sci. Techno
Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures
A novel octahedron-like hierarchical structure of Bi2WO6has been fabricated by a facile hydrothermal method in high quantity. XRD, SEM, TEM, and HRTEM were used to characterize the product. The results indicated that this kind of Bi2WO6crystals had an average size of ~4 μm, constructed by quasi-square single-crystal nanosheets assembled in a special fashion. The formation of octahedron-like hierarchical structure of Bi2WO6depended crucially on the pH value of the precursor suspensions. The photocatalytic activity of the hierarchical Bi2WO6structures toward RhB degradation under visible light was investigated, and it was found to be significantly better than that of the sample fabricated by SSR. The better photocatalytic property should be strongly associated with the high specific surface area and the abundant pore structure of the hierarchical octahedron-like Bi2WO6
Recommended from our members
Purification and functional characterisation of rhiminopeptidase A, a novel aminopeptidase from the venom of Bitis gabonica rhinoceros
This study describes the discovery and characterisation of a novel aminopeptidase A from the venom of B. g. rhinoceros and highlights its potential biological importance. Similar to mammalian aminopeptidases, rhiminopeptidase A might be capable of playing roles in altering the blood pressure and brain function of victims. Furthermore, it could have additional effects on the biological functions of other host proteins by cleaving their N-terminal amino acids. This study points towards the importance of complete analysis of individual components of snake venom in order to develop effective therapies for snake bites
The influence of thermal cycles on the microstructure of grade 92 steel
The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range
of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing
peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-xisting precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels
- …