404 research outputs found

    Talin1 Promotes Prostate Cancer Invasion and Metastasis via AKT Signaling and Anoikis Resistance

    Get PDF
    Talin1 is an integrin regulatory protein that mediates integrin interactions with the extracellular matrix (ECM). This study investigated the significance of talin1 in prostate cancer progression to metastasis in vitro and in vivo. Talin1 overexpression enhanced prostate cancer cell adhesion, migration and invasion by activating survival signals and anoikis resistance. ShRNA-mediated talin1 loss led to a significant suppression of prostate cancer cell migration and transendothelial invasion in vitro and a significant inhibition of prostate cancer metastasis in vivo. Talin1 regulates cell survival signals via phosphorylation of focal adhesion kinase (FAK) and AKT. Targeting AKT activation led to a significant reduction of talin1-mediated prostate cancer cell invasion. Furthermore, talin1 expression was determined by immunostaining in prostate tissue from the TRAMP mouse model and in human prostate cancer specimens. Talin1 levels directly correlated with prostate tumor progression to metastasis in TRAMP mice. Talin1 profiling in human prostate specimens revealed a significantly higher expression of cytoplasmic talin1 in metastatic tissue compared to primary prostate tumors and benign prostate tissue (P<0.0001). This evidence suggests a potential value for talin1 as a marker of prostate cancer metastasis and implies that disrupting talin1 mediated signaling may have therapeutic significance in the treatment of metastatic disease

    Direct Emission of I_2 Molecule and IO Radical from the Heterogeneous Reactions of Gaseous Ozone with Aqueous Potassium Iodide Solution

    Get PDF
    Recent studies indicated that gaseous halogens mediate key tropospheric chemical processes. The inclusion of halogen-ozone chemistry in atmospheric box models actually closes the ~50% gap between estimated and measured ozone losses in the marine boundary layer. The additional source of gaseous halogens is deemed to involve previously unaccounted for reactions of O_3(g) with sea surface water and marine aerosols. Here, we report that molecular iodine, I_2(g), and iodine monoxide radical, IO(g), are released ([I_2(g)] > 100[IO(g)]) during the heterogeneous reaction of gaseous ozone, O_3(g), with aqueous potassium iodide, KI(aq). It was found that (1) the amounts of I_2(g) and IO(g) produced are directly proportional to [KI(aq)] up to 5 mM and (2) IO(g) yields are independent of bulk pH between 2 and 11, whereas I_2(g) production is markedly enhanced at pH < 4. We propose that O_3(g) reacts with I− at the air/water interface to produce I_2(g) and IO(g) via HOI and IOOO− intermediates, respectively

    Enhanced audiovisual integration with aging in speech perception: a heightened McGurk effect in older adults

    Get PDF
    Two experiments compared young and older adults in order to examine whether aging leads to a larger dependence on visual articulatory movements in auditory-visual speech perception. These experiments examined accuracy and response time in syllable identification for auditory-visual (AV) congruent and incongruent stimuli. There were also auditory-only (AO) and visual-only (VO) presentation modes. Data were analyzed only for participants with normal hearing. It was found that the older adults were more strongly influenced by visual speech than the younger ones for acoustically identical signal-to-noise ratios (SNRs) of auditory speech (Experiment 1). This was also confirmed when the SNRs of auditory speech were calibrated for the equivalent AO accuracy between the two age groups (Experiment 2). There were no aging-related differences in VO lipreading accuracy. Combined with response time data, this enhanced visual influence for the older adults was likely to be associated with an aging-related delay in auditory processing

    Lobectomy for lung cancer with a displaced left B1 + 2 and an anomalous pulmonary vein : a case report

    Get PDF
    Background: A displaced left B1 + 2 accompanied by an anomalous pulmonary vein is a rare condition involving complex structures. There is a risk of unexpected injuries to bronchi and blood vessels when patients with such anomalies undergo surgery for lung cancer. Case presentation: A 59-year-old male with suspected lung cancer in the left lower lobe was scheduled to undergo surgery. Chest computed tomography revealed a displaced B1 + 2 and hyperlobulation between S1 + 2 and S3, while the interlobar fissure between S1 + 2 and S6 was completely fused. Three-dimensional computed tomography (3D-CT) revealed an anomalous V1 + 2 joining the left inferior pulmonary vein and a branch of the V1 + 2 running between S1 + 2 and S6. We performed left lower lobectomy via video-assisted thoracic surgery, while taking care with the abovementioned anatomical structures. The strategy employed in this operation was to preserve V1 + 2 and confirm the locations of B1 + 2 and B6 when dividing the fissure. Conclusion: The aim of the surgical procedure performed in this case was to divide the fissure between S1 + 2 and the inferior lobe to reduce the risk of an unexpected bronchial injury. 3D-CT helps surgeons to understand the stereoscopic positional relationships among anatomical structures

    “Sizing” Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles

    Get PDF
    The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H_2SO_4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H_2SO_4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H_2SO_4(g) in the gas phase and into SO_4^(2–) + MeSO_3– (methanesulfonate) on water surfaces. R = MeSO_3–/(non-sea-salt SO_4^(2–)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if R_(het) = MeSO_3–/SO_4^(2–) for DMSO(aq) + ·OH(g) were known. Here, we report that R_(het) = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO_3– produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols

    Fenton chemistry at aqueous interfaces

    Get PDF
    In a fundamental process throughout nature, reduced iron unleashes the oxidative power of hydrogen peroxide into reactive intermediates. However, notwithstanding much work, the mechanism by which Fe^(2+) catalyzes H_2O_2 oxidations and the identity of the participating intermediates remain controversial. Here we report the prompt formation of O=Fe^(IV)CI_3^− and chloride-bridged di-iron O=Fe^(IV)·CI·FeIICI_4^− and O=Fe^(IV)·CI·Fe^(III)CI_5^− ferryl species, in addition to Fe^(III)CI_4^−, on the surface of aqueous FeCI_2 microjets exposed to gaseous H_2O_2 or O_3 beams for 10^3 times faster than Fe(H_2O)_6^(2+) in bulk water via a process that favors inner-sphere two-electron O-atom over outer-sphere one-electron transfers. The higher reactivity of di-iron ferryls vs. O=Fe^(IV)CI_3^− as O-atom donors implicates the electronic coupling of mixed-valence iron centers in the weakening of the Fe^(IV)–O bond in poly-iron ferryl species
    corecore