3,070 research outputs found

    Reconstruction of general scalar-field dark energy models

    Full text link
    The reconstruction of scalar-field dark energy models is studied for a general Lagrangian density p(ϕ,X)p(\phi, X), where XX is a kinematic term of a scalar field ϕ\phi. We implement the coupling QQ between dark energy and dark matter and express reconstruction equations using two observables: the Hubble parameter HH and the matter density perturbation δm\delta_m. This allows us to determine the structure of corresponding theoretical Lagrangian together with the coupling QQ from observations. We apply our formula to several forms of Lagrangian and present concrete examples of reconstruction by using the recent Gold dataset of supernovae measurements. This analysis includes a generalized ghost condensate model as a way to cross a cosmological-constant boundary even for a single-field case.Comment: 8 pages, 2 figure

    New Vistas in Braneworld Cosmology

    Full text link
    Traditionally, higher-dimensional cosmological models have sought to provide a description of the fundamental forces in terms of a unifying geometrical construction. In this essay we discuss how, in their present incarnation, higher-dimensional `braneworld' models might provide answers to a number of cosmological puzzles including the issue of dark energy and the nature of the big-bang singularity.Comment: Honorable mention in the 2002 Essay Competition of the Gravity Research Foundation. 10 pages, 2 figure

    A new null diagnostic customized for reconstructing the properties of dark energy from BAO data

    Full text link
    Baryon Acoustic Oscillations (BAO) provide an important standard ruler which can be used to probe the recent expansion history of our universe. We show how a simple extension of the Om diagnostic, which we call Om3, can combine standard ruler information from BAO with standard candle information from type Ia supernovae (SNIa) to yield a powerful novel null diagnostic of the cosmological constant hypothesis. A unique feature of Om3 is that it requires minimal cosmological assumptions since its determination does not rely upon prior knowledge of either the current value of the matter density and the Hubble constant, or the distance to the last scattering surface. Observational uncertainties in these quantities therefore do not affect the reconstruction of Om3. We reconstruct Om3 using the Union 2.1 SNIa data set and BAO data from SDSS, WiggleZ and 6dFGS. Our results are consistent with dark energy being the cosmological constant. We show how Om and Om3 can be used to obtain accurate model independent constraints on the properties of dark energy from future data sets such as BigBOSS.Comment: 9 pages, 4 figures, discussions extended, results unchanged, matches the final version published in PR

    Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints

    Full text link
    We discuss observational consequences of f(R) dark energy scenarios that satisfy local gravity constraints (LGC) as well as conditions of the cosmological viability. The model we study is given by m(r)=C(-r-1)^p (C>0, p>1) with m=Rf_{,RR}/f_{,R} and r=-Rf_{,R}/f, which cover viable f(R) models proposed so far in a high-curvature region designed to be compatible with LGC. The equation of state of dark energy exhibits a divergence at a redshift z_c that can be as close as a few while satisfying sound horizon constraints of Cosmic Microwave Background (CMB). We study the evolution of matter density perturbations in details and place constraints on model parameters from the difference of spectral indices of power spectra between CMB and galaxy clustering. The models with p>5 can be consistent with those observational constraints as well as LGC. We also discuss the evolution of perturbations in the Ricci scalar R and show that an oscillating mode (scalaron) can easily dominate over a matter-induced mode as we go back to the past. This violates the stability of cosmological solutions, thus posing a problem about how the over-production of scalarons should be avoided in the early universe.Comment: 13 pages, 7 figures, version to appear in Physical Review

    CMB acoustic scale in the entropic-like accelerating universe

    Full text link
    We consider generalizations of the entropic accelerating universe recently proposed in Ref. [4,5] and show that their background equations can be made equivalent to a model with a dark energy component with constant parameter of state wX=−1+2 γ/3w_{X} = -1 + 2\, \gamma /3, where γ\gamma is related to the coefficients of the new terms in the Friedman equations. After discussing all the Friedman equations for an arbitrary γ\gamma, we show how to recover the standard scalings for dust and radiation. The acoustic scale ℓA\ell_A, related to the peak positions in the pattern of the angular power spectrum of the Cosmic Microwave Background anisotropies, is also computed and yields the stringent bound ∣γ∣≪1|\gamma|\ll 1. We then argue that future data might be able to distinguish this model from pure Λ\LambdaCDM (corresponding to γ=0\gamma=0).Comment: 6 pages, 2 figures. Accepted for publication in Physical Review

    Is cosmic acceleration slowing down?

    Full text link
    We investigate the course of cosmic expansion in its `recent past' using the Constitution SN Ia sample (which includes CfA data at low redshifts), jointly with signatures of baryon acoustic oscillations (BAO) in the galaxy distribution and fluctuations in the cosmic microwave background (CMB). Earlier SN Ia data sets could not address this issue because of a paucity of data at low redshifts. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q_0=0) fits the data about as well as LCDM. This effect, which is most clearly seen using the recently introduced `Om' diagnostic, corresponds to an increase of Om(z) and q(z) at redshifts z \lleq 0.3. In geometrical terms, this suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analysed in combination with BAO+CMB using the same statistical methods. The effect we observe could correspond to DE decaying into dark matter (or something else). A toy model which mimics this process agrees well with the combined SN Ia+BAO+CMB data.Comment: 6 pages, 5 figures, presentation expanded, results for a new subsample of the Constitution set are added, new BAO data are accounted for, main results unchange

    Background cosmological dynamics in f(R)f(R) gravity and observational constraints

    Full text link
    In this paper, we carry out a study of viable cosmological models in f(R)f(R)-gravity at the background level. We use observable parameters like Ω\Omega and γ\gamma to form autonomous system of equations and show that the models under consideration exhibit two different regimes in their time evolution, namely, a phantom phase followed by a quintessence like behavior. We employ statefinder parameters to emphasize a characteristic discriminative signature of these models.Comment: 6 pages, Latex style, 9 eps figures, replaced versions with new references added, Submitted to Phys.Rev.

    Two new diagnostics of dark energy

    Full text link
    We introduce two new diagnostics of dark energy (DE). The first, Om, is a combination of the Hubble parameter and the cosmological redshift and provides a "null test" of dark energy being a cosmological constant. Namely, if the value of Om(z) is the same at different redshifts, then DE is exactly cosmological constant. The slope of Om(z) can differentiate between different models of dark energy even if the value of the matter density is not accurately known. For DE with an unevolving equation of state, a positive slope of Om(z) is suggestive of Phantom (w < -1) while a negative slope indicates Quintessence (w > -1). The second diagnostic, "acceleration probe"(q-probe), is the mean value of the deceleration parameter over a small redshift range. It can be used to determine the cosmological redshift at which the universe began to accelerate, again without reference to the current value of the matter density. We apply the "Om" and "q-probe" diagnostics to the Union data set of type Ia supernovae combined with recent data from the cosmic microwave background (WMAP5) and baryon acoustic oscillations.Comment: 14 pages, 9 figures. Some new results and an additional reference. Main conclusions unchanged. Matches published versio
    • …
    corecore