20 research outputs found

    Physical exercise potentially targets epicardial adipose tissue to reduce cardiovascular disease risk in patients with metabolic diseases : oxidative stress and inflammation emerge as major therapeutic targets

    Get PDF
    CITATION: Nyawo, T. A. et al. 2021. Physical exercise potentially targets epicardial adipose tissue to reduce cardiovascular disease risk in patients with metabolic diseases : oxidative stress and inflammation emerge as major therapeutic targets. Antioxidants, 10(11):1758, doi:10.3390/antiox10111758.The original publication is available at https://www.mdpi.comENGLISH ABSTRACT: Excess epicardial adiposity, within a state of obesity and metabolic syndrome, is emerging as an important risk factor for the development of cardiovascular diseases (CVDs). Accordingly, increased epicardial fat thickness (EFT) implicates the exacerbation of pathological mechanisms involving oxidative stress and inflammation within the heart, which may accelerate the development of CVDs. This explains increased interest in targeting EFT reduction to attenuate the detrimental effects of oxidative stress and inflammation within the setting of metabolic syndrome. Here, we critically discuss clinical and preclinical evidence on the impact of physical exercise on EFT in correlation with reduced CVD risk within a setting of metabolic disease. This review also brings a unique perspective on the implications of oxidative stress and inflammation as major pathological consequences that link increased EFT to accelerated CVD risk in conditions of metabolic disease.https://www.mdpi.com/2076-3921/10/11/1758Publisher's versio

    Determinants of bone marrow adiposity: The modulation of peroxisome proliferator-activated receptor-gamma2 activity as a central mechanism

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeInterne Geneeskund

    The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeInterne Geneeskund

    Depot-specific and hypercaloric diet-induced effects on the osteoblast and adipocyte differentiation potential of adipose-derived stromal cells

    No full text
    Adipose-derived stromal cells (ADSCs) can be differentiated in vitro into several mesenchyme-derived cell types. We had previously described depot-specific differences in the adipocyte differentiation of ADSCs, and consequently we hypothesized that there may also be depot-specific differences in osteoblast differentiation of ADSCs. For this study, the osteoblast differentiation potential of rat subcutaneous ADSCs (scADSCs) and perirenal visceral ADSCs (pvADSCs) was compared. Osteoblast differentiation media (OM) induced markers of the osteoblastic phenotype in scADSCs, but not in pvADSCs. ADSCs harvested from rats with diet-induced visceral obesity (DIO) exhibited reduced osteoinduction, compared to lean controls, but adipocyte differentiation was not affected. Expression of the pro-osteogenic transcription factor Msx2 was significantly higher in naïve scADSCs from lean and DIO rats than in pvADSCs. Our findings indicate that ADSCs from different anatomical sites are uniquely pre-programmed in vivo in a depot-specific manner, and that diet-induced metabolic disturbances translate into reduced osteoblast differentiation of ADSCs. © 2011 Elsevier Ireland Ltd
    corecore