42 research outputs found

    Transforming growth factor beta-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro

    Get PDF
    BACKGROUND: TGF beta and its receptors are present in both germ cells and somatic cells of the male gonad. However, knock-out strategies for studying spermatogenesis regulation by TGF beta have been disappointing since TGF beta-or TGF beta receptor-null mice do not survive longer than a few weeks. METHODS: In the present study, we addressed the role of TGF beta-1 on the completion of meiosis by rat pachytene spermatocytes (PS) cocultured with Sertoli cells. Identification and counting of meiotic cells were performed by cytology and cytometry. RESULTS: Under our culture conditions, some PS differentiated into round spermatids (RS). When TGF beta-1 was added to the culture medium, neither the number of PS or of secondary spermatocytes nor the half-life of RS was modified by the factor. By contrast, the number of RS and the amount of TP1 mRNA were lower in TGF beta-1-treated cultures than in control cultures. Very few metaphase I cells were ever observed both in control and TGF beta-1-treated wells. Higher numbers of metaphase II were present and their number was enhanced by TGF beta-1 treatment. A TGF beta-like bioactivity was detected in control culture media, the concentration of which increased with the time of culture. CONCLUSION: These results indicate that TGF beta-1 did not change greatly, if any, the yield of the first meiotic division but likely enhanced a bottleneck at the level of metaphase II. Taken together, our results suggest strongly that TGF beta participates in an auto/paracrine pathway of regulation of the meiotic differentiation of rat spermatocytes

    Quantification of nanoparticle endocytosis based on double fluorescent pH-sensitive nanoparticles

    Get PDF
    International audienceAmorphous silica is a particularly interesting material because of its inertness and chemical stability. Silica nanoparticles have been recently developed for biomedical purposes but their innocuousness must be carefully investigated before clinical use. The relationship between nanoparticles physicochemical features, their uptake by cells and their biological activity represents a crucial issue, especially for the development of nanomedicine. This work aimed at adapting a method for the quantification of nanoparticle endocytosis based on pH-sensitive and double fluorescent particles. For that purpose, silica nanoparticles containing two fluorophores: FITC and pHrodoTM were developed, their respective fluorescence emission depends on the external pH. Indeed, FITC emits a green fluorescence at physiological pH and pHrodoTM emits a red fluorescence which intensity increased with acidification. Therefore, nanoparticles remained outside the cells could be clearly distinguished from nanoparticles uptaken by cells as these latter could be spotted inside cellular acidic compartments (such as phagolysosomes, micropinosomes...). Using this model, the endocytosis of 60 nm nanoparticles incubated with the RAW 264.7 macrophages was quantified using time-lapse microscopy and compared to that of 130 nm submicronic particles. The amount of internalized particles was also evaluated by fluorimetry. The biological impact of the particles was also investigated in terms of cytotoxicity, pro-inflammatory response and oxidative stress. Results clearly demonstrated that nanoparticles were more uptaken and more reactive than submicronic particles. Moreover, we validated a method of endocytosis quantification

    Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms

    Get PDF
    International audienceBackground: The use of micro- or nanometric particles is in full expansion for the development of new technologies. These particles may exhibit variable toxicity levels depending on their physicochemical characteristics. We focused our attention on macrophages (MA), the main target cells of the respiratory system responsible for the phagocytosis of the particles. The quantification of the amount of phagocytosed particles seems to be a major element for a better knowledge of toxicity mechanisms. The aim of this study was to develop a quantitative evaluation of uptake using both flow cytometry (FCM) and confocal microscopy to distinguish entirely engulfed fluorescent microsized particles from those just adherent to the cell membrane and to compare these data to in vitro toxicity assessments. Methods: Fluorescent particles of variable and well-characterised sizes and surface coatings were incubated with MA (RAW 264.7 cell line). Analyses were performed using confocal microscopy and FCM. The biological toxicity of the particles was evaluated [lactate dehydrogenase (LDH) release, tumor necrosis factor (TNF)-α, and reactive oxygen species (ROS) production]. Results and conclusion: Confocal imaging allowed visualization of entirely engulfed beads. The amount of phagocytic cells was greater for carboxylate 2-”m beads (49±11%) than for amine 1-”m beads (18±5%). Similarly, side scatter geometric means, reflecting cellular complexity, were 446±7 and 139±12, respectively. These results confirm that the phagocytosis level highly depends on the size and surface chemical groups of the particles. Only TNF-α and global ROS production varied significantly after 24-h incubation. There was no effect on LDH and H2O2 production

    Identification of Germinal Center B Cells in Blood from HIV-infected Drug-naive Individuals in Central Africa

    Get PDF
    To better understand the pathophysiology of B cell populations—the precursors of antibody secreting cells—during chronic human immunodeficiency virus (HIV) infection, we examined the phenotype of circulating B cells in newly diagnosed Africans. We found that all African individuals displayed low levels of naive B cells and of memory-type CD27+ B cells, and high levels of differentiated B cells. On the other hand, HIV-infected African patients had a population of germinal center B cells (i.e. CD20+, sIgM-, sIgD+, CD77+, CD138±), which are generally restricted to lymph nodes and do not circulate unless the lymph node architecture is altered. The first observations could be linked to the tropical environment whereas the presence of germinal center B cells may be attributable to chronic exposure to HIV as it is not observed in HIV-negative African controls and HAART treated HIV-infected Europeans. It may impact the management of HIV infection in countries with limited access to HIV drugs and urges consideration for implementation of therapeutic vaccines

    ModĂšle de quantification de la phagocytose Ă  partir de particules fluorescentes

    Get PDF
    International audienceLes particules industrielles fines et ultrafines peuvent ĂȘtre inhalĂ©es et atteindre les alvĂ©oles pulmonaires oĂč elles interagiront prĂ©fĂ©rentiellement avec des macrophages alvĂ©olaires dotĂ©s d'une activitĂ© de phagocytose qui leur permet d'internaliser les particules Ă©trangĂšres afin de les Ă©liminer

    Cytostatic Factor Proteins Are Present in Male Meiotic Cells and ÎČ-Nerve Growth Factor Increases Mos Levels in Rat Late Spermatocytes

    Get PDF
    Background: In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF regulates the second meiotic division by blocking secondary spermatocytes in metaphase (metaphase II), and thereby lowers round spermatid formation. In vertebrates, mature oocytes are arrested at metaphase II until fertilization, because of the presence of cytostatic factor (CSF) in their cytoplasm. By analogy, we hypothesized the presence of CSF in male germ cells. Methodology/Principal Findings: We show here, that Mos, Emi2, cyclin E and Cdk2, the four proteins of CSF, and their respective mRNAs, are present in male rat meiotic cells; this was assessed by using Western blotting, immunocytochemistry and reverse transcriptase PCR. We measured the relative cellular levels of Mos, Emi2, Cyclin E and Cdk2 in the meiotic cells by flow cytometry and found that the four proteins increased throughout the first meiotic prophase, reaching their highest levels in middle to late pachytene spermatocytes, then decreased following the meiotic divisions. In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF increased the number of metaphases II, while enhancing Mos and Emi2 levels in middle to late pachytene spermatocytes, pachytene spermatocytes in division and secondary spermatocytes. Conclusion/Significance: Our results suggest that CSF is not restricted to the oocyte. In addition, they reinforce the view that NGF, by enhancing Mos in late spermatocytes, is one of the intra-testicular factors which adjusts the number of round spermatids that can be supported by Sertoli cells

    Meiotic progression of rat spermatocytes requires mitogen-activated protein kinases of Sertoli cells and close contacts between the germ cells and the Sertoli cells

    Get PDF
    International audienceProgression of germ cells through meiosis is regulated by phosphorylation events. We previously showed the key role of cyclin dependent kinases in meiotic divisions of rat spermatocytes co-cultured with Sertoli cells (SC). In the present study, we used the same culture system to address the role of mitogen-activated protein kinases (MAPKs) in meiotic progression. Phosphorylated ERK1/2 were detected in vivo and in freshly isolated SC and in pachytene spermatocytes (PS) as early as 3 h after seeding on SC. The yield of the two meiotic divisions and the percentage of highly MPM-2-labeled pachytene and secondary spermatocytes (SII) were decreased in co-cultures treated with U0126, an inhibitor of the ERK-activating kinases, MEK1/2. Pre-incubation of PS with U0126 resulted in a reduced number of in vitro formed round spermatids without modifying the number of SII or the MPM-2 labeling of PS or SII. Conversely, pre-treatment of SC with U0126 led to a decrease in the percentage of highly MPM-2-labeled PS associated with a decreased number of SII and round spermatids, These results show hat meiotic progression of spermatocytes is dependent on SC-activated MAPKs. In addition, high MPM-2 labeling was not acquired by PS cultured alone in Sertoli cell conditioned media, indicating a specific need for cell-cell contact between germ cells and SC. (C) 2007 Elsevier Inc. All rights reserved
    corecore